《二叉搜索树:数据世界的高效猎人》

 前言

本篇博客将详细介绍C++的二叉搜索树

💖 个人主页熬夜写代码的小蔡

本篇文章所涉及的代码在Gitte仓库

码云——二叉搜索树

🖥 文章专栏:C++

若有问题 评论区见

🎉欢迎大家点赞👍收藏⭐文章 ​

d6b44a6e06316a12d6dec7f29fc29d7b.gif

ca618b2856ce45c78a02cc2a85b3b0f6.gif

一.二叉搜索树的概念

⼆叉搜索树⼜称⼆叉排序树,它或者是⼀棵空树,或者是具有以下性质的⼆叉树:
• 若它的左⼦树不为空,则左⼦树上所有结点的值都⼩于等于根结点的值
• 若它的右⼦树不为空,则右⼦树上所有结点的值都⼤于等于根结点的值
• 它的左右⼦树也分别为⼆叉搜索树
• ⼆叉搜索树中可以⽀持插⼊相等的值,也可以不⽀持插⼊相等的值,具体看使⽤场景定义,后续我们学习map/set/multimap/multiset系列容器底层就是⼆叉搜索树,其中map/set不⽀持插⼊相等
值,multimap/multiset⽀持插⼊相等值

二.二叉树的性能分析

最优情况下,⼆叉搜索树为完全⼆叉树(或者接近完全⼆叉树),其⾼度为: log2 N


最差情况下,⼆叉搜索树退化为单⽀树(或者类似单⽀),其⾼度为: N


所以综合⽽⾔⼆叉搜索树增删查改时间复杂度为: O(N)

另外需要说明的是,⼆分查找也可以实现 O(log2 N) 级别的查找效率,但是⼆分查找有两⼤缺陷:
1. 需要存储在⽀持下标随机访问的结构中,并且有序。
2. 插⼊和删除数据效率很低,因为存储在下标随机访问的结构中,插⼊和删除数据⼀般需要挪动数
据。
所以这⾥也就体现出了平衡⼆叉搜索树的价值。

三、二叉搜索树的基本操作

3.1二叉搜索树的插入

插入操作的步骤如下:

  1. 如果树为空,直接创建根节点。
  2. 如果树不为空,从根节点开始比较,插⼊值⽐当前结点⼤往右⾛,插⼊值⽐当前结点⼩往左⾛,找到空位置,插⼊新结点。
  3. 如果插入的值已经存在,则插入失败。
    template<class K>
    struct BSTNode
    {
    	K _key;
    	BSTNode<K>* _left;
    	BSTNode<K>* _right;
    	BSTNode(const K& key)
    		:_key(key)
    		, _left(nullptr)
    		, _right(nullptr)
    	{}
    };
    template<class K>
    class BSTree
    {
    	typedef BSTNode<K> Node;
    public:
    	bool Insert(const K& key)
    	{
    		if (_root == nullptr)
    		{
    			_root = new Node(key);
    			return true;
    		}
    		Node* parent = nullptr;
    		Node* cur = _root;
    		while (cur)
    		{
    			if (key > cur->_key)
    			{
    				parent = cur;
    				cur = cur->_right;
    			}
    			else if (key < cur->_key)
    			{
    				parent = cur;
    				cur = cur->_left;
    			}
    			else
    			{
    				return false;
    			}
    		}
    		cur = new Node(key);
    		cur = new Node(key);
    		if (parent->_key < key)
    		{
    			parent->_right = cur;
    		}
    		else
    		{
    			parent->_left = cur;
    		}
    		return true;
    	}
    
    private:
    	Node* _root = nullptr;
    };

3.2二叉搜索树的查找

1. 从根开始⽐较,查找x,x⽐根的值⼤则往右边⾛查找,x⽐根值⼩则往左边⾛查找。
2. 最多查找⾼度次,⾛到到空,还没找到,这个值不存在。
3. 如果不⽀持插⼊相等的值,找到x即可返回
4. 如果⽀持插⼊相等的值,意味着有多个x存在,⼀般要求查找中序的第⼀个x。如下图,查找3,要到1的右孩⼦的那个3返回

 

bool Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key < key)
		{
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			cur = cur->_left;
		}
		else
		{
			return true;
		}
	}
	return false;
}

3.2二叉搜索树的删除 

⾸先查找元素是否在⼆叉搜索树中,如果不存在,则返回false。
如果查找元素存在则分以下四种情况分别处理:(假设要删除的结点为N)
1. 要删除结点N左右孩⼦均为空
2. 要删除的结点N左孩⼦位空,右孩⼦结点不为空
3. 要删除的结点N右孩⼦位空,左孩⼦结点不为空
4. 要删除的结点N左右孩⼦结点均不为空

对应以上四种情况的解决⽅案:
1. 把N结点的⽗亲对应孩⼦指针指向空,直接删除N结点(情况1可以当成2或者3处理,效果是⼀样的)
2. 把N结点的⽗亲对应孩⼦指针指向N的右孩⼦,直接删除N结点
3. 把N结点的⽗亲对应孩⼦指针指向N的左孩⼦,直接删除N结点
4. ⽆法直接删除N结点,因为N的两个孩⼦⽆处安放,只能⽤替换法删除。找N左⼦树的值最⼤结点R(最右结点)或者N右⼦树的值最⼩结点R(最左结点)替代N,因为这两个结点中任意⼀个,放到N的位置,都满⾜⼆叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转⽽变成删除R结点,R结点符合情况2或情况3,可以直接删除。

bool Erase(const K& key)
{
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else//删除
		{
			//0个孩子或者1个孩子的删除
			//左为空
			if (cur->_left == nullptr)
			{
				if (cur == _root)
				{
					_root = cur->_right;
				}
				else
				{
					if (parent->_left == cur)
					{
						parent->_left = cur->_right;
					}
					else
					{
						parent->_right = cur->_right;
					}
				}
				delete cur;
			}
			//右为空
			else if (cur->_right == nullptr)
			{
				if (cur == _root)
				{
					_root = cur->_left;
				}
				else
				{
					if (parent->_left == cur)
					{
						parent->_left = cur->_left;
					}
					else
					{
						parent->_right = cur->_left;
					}

				}
				delete cur;
			}
			
			else//两个孩子的删除
			{
				Node* replaceparent = cur;
				Node* replace = cur->_right;
				while (replace->_left)
				{
					replaceparent = replace;
					replace = replace->_left;
				}
				cur->_key = replace->_key;
				if (replaceparent->_left == replace)
				{
					replaceparent->_left = replace->_right;
				}
				else
				{
					replaceparent->_right = replace->_right;
				}
				delete replace;
				
			}
			return true;
		}

	}
	return false;
}

 四. ⼆叉搜索树key和key/value使⽤场景

4.1key搜索场景

只有key作为关键码,结构中只需要存储key即可,关键码即为需要搜索到的值,搜索场景只需要判断key在不在。key的搜索场景实现的⼆叉树搜索树⽀持增删查,但是不⽀持修改,修改key破坏搜索树结构了。
场景1:⼩区⽆⼈值守⻋库,⼩区⻋库买了⻋位的业主⻋才能进⼩区,那么物业会把买了⻋位的业主的⻋牌号录⼊后台系统,⻋辆进⼊时扫描⻋牌在不在系统中,在则抬杆,不在则提⽰⾮本⼩区⻋辆,⽆法进⼊。
场景2:检查⼀篇英⽂⽂章单词拼写是否正确,将词库中所有单词放⼊⼆叉搜索树,读取⽂章中的单词,查找是否在⼆叉搜索树中,不在则波浪线标红提⽰。

4.2 key/value搜索场景

⼀个关键码key,都有与之对应的值value,value可以任意类型对象。树的结构中(结点)除了需要存
储key还要存储对应的value,增/删/查还是以key为关键字⾛⼆叉搜索树的规则进⾏⽐较,可以快速查找到key对应的value。key/value的搜索场景实现的⼆叉树搜索树⽀持修改,但是不⽀持修改key,修改key破坏搜索树性质了,可以修改value。

4.3key/value⼆叉搜索树代码实现

为了方便查看代码,代码在Gitee上

https://gitee.com/cai-bowei/text.c/blob/master/15.%E4%BA%8C%E5%8F%89%E6%90%9C%E7%B4%A2%E6%A0%91/BinarySearch.h

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值