int exGcd(int a, int b, int &x, int &y) { if(b == 0) { x = 1; y = 0; return a; } int r = exGcd(b, a % b, x, y); int t = x; x = y; y = t - a / b * y; return r; }
把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。
可以这样思考:
对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')
由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
那么可以得到:
a'x + b'y = Gcd(a', b') ===> bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===> ay +b(x - a / b*y) = Gcd(a, b)