94题 Binary Tree Maximum Path Sum

该博客主要讨论如何解决一个计算机科学问题,即在给定的二叉树中找到最大的路径和。路径可以始于和终止于树中的任意节点,路径和是路径上所有节点值的总和。解决方案通过递归地遍历每个节点来计算左子树和右子树的最大路径,并更新全局最大路径和。关键在于理解如何有效地计算节点的最大贡献并处理负数的情况。

Binary Tree Maximum Path Sum

Description
Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
(Path sum is the sum of the weights of nodes on the path between two nodes.)

/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */

public class Solution {
    /**
     * @param root: The root of binary tree.
     * @return: An integer
     */
    //private TreeNode subTree = null ;
    
    private int maxSum;
    
    public int maxPathSum(TreeNode root) {
        maxSum = Integer.MIN_VALUE;
        findMax(root);
        return maxSum;
    }
    
    private int findMax(TreeNode node) {
        if (node == null) return 0;

        int left = findMax(node.left);
        int right = findMax(node.right); 

        maxSum = Math.max(node.val + left + right, maxSum);
        int path = node.val + Math.max(left, right);
        return Math.max(path, 0); //当某一端为负时,返回0.
    }

}
这段代码是一个经典的 **二叉树中的最大路径和**(LeetCode 第124)的解法,使用了 **DFS(深度优先搜索) + 动态规划思想**。 你提供的代码使用了 C++14 以后的特性,如 **lambda 表达式递归(`this auto&& dfs`)** 和 **立即调用 lambda** 的方式来实现递归 DFS。这种写法在 LeetCode 等 OJ 平台上非常常见,但如果你希望在 **Visual Studio(VS)等标准编译器下编译运行**,这段代码 **可能无法通过编译**,因为 `this auto&& dfs` 这种写法不是标准 C++,而是某些编译器的扩展(比如 GCC 支持,但 MSVC 不支持)。 --- ### ✅ VS 兼容的完整版本(标准 C++17 写法) 下面是可以在 Visual Studio 上正常编译运行的完整版本: ```cpp #include <iostream> #include <algorithm> #include <climits> using namespace std; // Definition for a binary tree node. struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; class Solution { public: int maxPathSum(TreeNode* root) { int ans = INT_MIN; dfs(root, ans); return ans; } private: // 返回以当前节点为结尾的最大路径链和 int dfs(TreeNode* node, int& ans) { if (!node) return 0; // 递归左右子树 int left_gain = max(dfs(node->left, ans), 0); // 只取正值 int right_gain = max(dfs(node->right, ans), 0); // 当前节点作为最高点,计算路径和 int current_path_sum = left_gain + right_gain + node->val; ans = max(ans, current_path_sum); // 返回当前节点的最大链和(只能选一边) return max(left_gain + node->val, right_gain + node->val); } }; ``` --- ### ✅ 示例 main 函数(用于测试) ```cpp int main() { // 构造一个测试二叉树: // 1 // / \ // 2 3 TreeNode* root = new TreeNode(1); root->left = new TreeNode(2); root->right = new TreeNode(3); Solution sol; cout << "Maximum Path Sum: " << sol.maxPathSum(root) << endl; // 输出 6 // 清理内存 delete root->left; delete root->right; delete root; return 0; } ``` --- ### ✅ VS 编译注意事项: - **不支持 `this auto&& dfs` 写法**(这是 GCC 的扩展)。 - 使用标准的类成员函数或普通函数来递归是兼容性更好的方式。 - 使用 `std::function` 也可以实现递归 lambda,但效率略低。 --- ### ✅ 使用 `std::function` 的版本(兼容性较好) ```cpp #include <functional> int maxPathSum(TreeNode* root) { int ans = INT_MIN; function<int(TreeNode*)> dfs = [&](TreeNode* node) { if (!node) return 0; int l = max(dfs(node->left), 0); int r = max(dfs(node->right), 0); ans = max(ans, l + r + node->val); return max(l, r) + node->val; }; dfs(root); return ans; } ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值