Kestrel and Storm

本文详细介绍了如何使用Storm从Kestrel集群中消费消息,包括设置开发环境、创建新Storm项目、理解Kestrel服务器和队列的工作原理,以及如何向Kestrel队列添加和移除项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

This page explains how to use to Storm to consume items from a Kestrel cluster.

Preliminaries

Storm

This tutorial uses examples from the storm-kestrel project and the storm-starter project. It's recommended that you clone those projects and follow along with the examples. Read Setting up development environment and Creating a new Storm project to get your machine set up.

Kestrel

It assumes you are able to run locally a Kestrel server as described here.

Kestrel Server and Queue

A single kestrel server has a set of queues. A Kestrel queue is a very simple message queue that runs on the JVM and uses the memcache protocol (with some extensions) to talk to clients. For details, look at the implementation of the KestrelClient class provided in storm-kestrel project.

Each queue is strictly ordered following the FIFO (first in, first out) principle. To keep up with performance items are cached in system memory; though, only the first 128MB is kept in memory. When stopping the server, the queue state is stored in a journal file.

Further, details can be found here.

Kestrel is:

  • fast
  • small
  • durable
  • reliable

For instance, Twitter uses Kestrel as the backbone of its messaging infrastructure as described here.

Add items to Kestrel

At first, we need to have a program that can add items to a Kestrel queue. The following method takes benefit of the KestrelClient implementation in storm-kestrel. It adds sentences into a Kestrel queue randomly chosen out of an array that holds five possible sentences.

  private static void queueSentenceItems(KestrelClient kestrelClient, String queueName)
		throws ParseError, IOException {
	
	String[] sentences = new String[] {
            "the cow jumped over the moon",
            "an apple a day keeps the doctor away",
            "four score and seven years ago",
            "snow white and the seven dwarfs",
            "i am at two with nature"};
	
	Random _rand = new Random();
	
	for(int i=1; i<=10; i++){
		
		String sentence = sentences[_rand.nextInt(sentences.length)];
		
		String val = "ID " + i + " " + sentence;
		
		boolean queueSucess = kestrelClient.queue(queueName, val);
		
		System.out.println("queueSucess=" +queueSucess+ " [" + val +"]");
	}
}

Remove items from Kestrel

This method dequeues items from a queue without removing them.

  private static void dequeueItems(KestrelClient kestrelClient, String queueName) throws IOException, ParseError
		 {
	for(int i=1; i<=12; i++){
		
		Item item = kestrelClient.dequeue(queueName);
		
		if(item==null){
			System.out.println("The queue (" + queueName + ") contains no items.");
		}
		else
		{
			byte[] data = item._data;
			
			String receivedVal = new String(data);
			
			System.out.println("receivedItem=" + receivedVal);
		}
	}

This method dequeues items from a queue and then removes them.

  private static void dequeueAndRemoveItems(KestrelClient kestrelClient, String queueName) 
  throws IOException, ParseError
	 {
		for(int i=1; i<=12; i++){
			
			Item item = kestrelClient.dequeue(queueName);
			
			
			if(item==null){
				System.out.println("The queue (" + queueName + ") contains no items.");
			}
			else
			{
				int itemID = item._id;
				
				
				byte[] data = item._data;
				
				String receivedVal = new String(data);
				
				kestrelClient.ack(queueName, itemID);
				
				System.out.println("receivedItem=" + receivedVal);
			}
		}
}

Add Items continuously to Kestrel

This is our final program to run in order to add continuously sentence items to a queue called sentence_queue of a locally running Kestrel server.

In order to stop it type a closing bracket char ']' in console and hit 'Enter'.

  import java.io.IOException;
  import java.io.InputStream;
  import java.util.Random;
  
  import backtype.storm.spout.KestrelClient;
  import backtype.storm.spout.KestrelClient.Item;
  import backtype.storm.spout.KestrelClient.ParseError;
  
  public class AddSentenceItemsToKestrel {
  
  	/**
  	 * @param args
  	 */
  	public static void main(String[] args) {
  				
  		InputStream is = System.in;
  				
		char closing_bracket = ']';
		
		int val = closing_bracket;
		
		boolean aux = true;
		
		try {
			
			KestrelClient kestrelClient = null;
			String queueName = "sentence_queue";
			
			while(aux){
				
				kestrelClient = new KestrelClient("localhost",22133);
				
				queueSentenceItems(kestrelClient, queueName);
				
				kestrelClient.close();
				
				Thread.sleep(1000);
				
				if(is.available()>0){
				 if(val==is.read())
					 aux=false;
				}
			}
		} catch (IOException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
		catch (ParseError e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
		
		System.out.println("end");

    }
}

Using KestrelSpout

This topology reads sentences off of a Kestrel queue using KestrelSpout, splits the sentences into its constituent words (Bolt: SplitSentence), and then emits for each word the number of times it has seen that word before (Bolt: WordCount). How data is processed is described in detail in Guaranteeing message processing.

  TopologyBuilder builder = new TopologyBuilder();
  builder.setSpout("sentences", new KestrelSpout("localhost",22133,"sentence_queue",new StringScheme()));
  builder.setBolt("split", new SplitSentence(), 10)
  	        .shuffleGrouping("sentences");
  builder.setBolt("count", new WordCount(), 20)
        .fieldsGrouping("split", new Fields("word"));

Execution

At first, start your local kestrel server in production or development mode.

Than, wait about 5 seconds in order to avoid a ConnectException.

Now execute the program to add items to the queue and launch the Storm topology. The order in which you launch the programs is of no importance.

If you run the topology with TOPOLOGY_DEBUG you should see tuples being emitted in the topology.

内容概要:文章基于4A架构(业务架构、应用架构、数据架构、技术架构),对SAP的成本中心和利润中心进行了详细对比分析。业务架构上,成本中心是成本控制的责任单元,负责成本归集控制,而利润中心是利润创造的独立实体,负责收入、成本和利润的核算。应用架构方面,两者都依托于SAP的CO模块,但功能有所区分,如成本中心侧重于成本要素归集和预算管理,利润中心则关注内部交易核算和获利能力分析。数据架构中,成本中心利润中心存在多对一的关系,交易数据通过成本归集、分摊和利润计算流程联动。技术架构依赖SAP S/4HANA的内存计算和ABAP技术,支持实时核算跨系统集成。总结来看,成本中心和利润中心在4A架构下相互关联,共同为企业提供精细化管理和决策支持。 适合人群:从事企业财务管理、成本控制或利润核算的专业人员,以及对SAP系统有一定了解的企业信息化管理人员。 使用场景及目标:①帮助企业理解成本中心和利润中心在4A架构下的运作机制;②指导企业在实施SAP系统时合理配置成本中心和利润中心,优化业务流程;③提升企业对成本和利润的精细化管理水平,支持业务决策。 其他说明:文章不仅阐述了理论概念,还提供了具体的应用场景和技术实现方式,有助于读者全面理解并应用于实际工作中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值