EXT 2.0 学习之控件介绍

本文介绍了EXT框架的基础使用方法,展示了Panel、MessageBox及TabPanel等控件的应用实例。EXT框架基于AjaxUI,用于创建美观的Web UI界面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EXT 是一种基于Ajax UI 的框架,主是用作UI,设计出来的窗体非常的漂亮,在这里就不多说什么,看看基本的控件吧:

Demo1:Panel控件

Ext.onReady(function(){
    var obj = new Ext.Panel({
        width: 300,
        height: 200,
        items: [{
            title: "P1",
            height: 50
        }, {
            title: "P2",
            height: 50
        }, {
            title: "P3",
            height: 50
        }]
    });
    obj.render("cao");
});
效果如下:
 
Demo2:MessageBox控件
Code:
Ext.onReady(function(){
   
    Ext.MessageBox.alert("", "This is one Demo!");
    var win = new Ext.Window({
        title: "提示",
        width: 100,
        height: 110,
        html: "<input type='text' value='cao' name='myText'>"
    });
    win.show();
});
效果如下:
 
Demo3:TabPanel控件
code:
Ext.onReady(function(){
	 var tab = new Ext.TabPanel({
                    width: 300,
                    height: 400,
                    items: [new Ext.Panel({
                        title: "面板1",
                        height: 50,
			html:"<input tyep='text' value='明天更美好!'>"
                    }), new Ext.Panel({
                        title: "面板2",
                        height: 50,
			html:"<input type='button' name='MyButton'>"
                    }), new Ext.Panel({
                        title: "面板3",
                        height: 50
                    })]
                });
	tab.render("cao");

 

效果如下:

image

在这里只是简单的介绍了,这个做WEB UI 是相当的不错;目前有的OA项目中就在用这个东西哟

目前我还对这个东西不是很了解,能力有限只能为大家介绍这一点,请等我的下一篇文章出现吧

 

 
内容概要:本文档详细介绍了基于MATLAB实现的无人机三维路径规划项目,核心算法采用蒙特卡罗树搜索(MCTS)。项目旨在解决无人机在复杂三维环境中自主路径规划的问题,通过MCTS的随机模拟与渐进式搜索机制,实现高效、智能化的路径规划。项目不仅考虑静态环境建模,还集成了障碍物检测与避障机制,确保无人机飞行的安全性和效率。文档涵盖了从环境准备、数据处理、算法设计与实现、模型训练与预测、性能评估到GUI界面设计的完整流程,并提供了详细的代码示例。此外,项目采用模块化设计,支持多无人机协同路径规划、动态环境实时路径重规划等未来改进方向。 适合人群:具备一定编程基础,特别是熟悉MATLAB和无人机技术的研发人员;从事无人机路径规划、智能导航系统开发的工程师;对MCTS算法感兴趣的算法研究人员。 使用场景及目标:①理解MCTS算法在三维路径规划中的应用;②掌握基于MATLAB的无人机路径规划项目开发全流程;③学习如何通过MCTS算法优化无人机在复杂环境中的飞行路径,提高飞行安全性和效率;④为后续多无人机协同规划、动态环境实时调整等高级应用打下基础。 其他说明:项目不仅提供了详细的理论解释和技术实现,还特别关注了实际应用中的挑战和解决方案。例如,通过多阶段优化与迭代增强机制提升路径质量,结合环境建模与障碍物感知保障路径安全,利用GPU加速推理提升计算效率等。此外,项目还强调了代码模块化与调试便利性,便于后续功能扩展和性能优化。项目未来改进方向包括引入深度强化学习辅助路径规划、扩展至多无人机协同路径规划、增强动态环境实时路径重规划能力等,展示了广阔的应用前景和发展潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值