环境安装
下面教程是完整的环境安装流程,采用Ubuntu 20.04LTS桌面版
一、Ubuntu基础配置
1、更新系统apt数据源
sudo vim /etc/apt/sources.list
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse
deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse
deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse
deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse
deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-security main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse
deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ bionic-proposed main restricted universe multiverse
然后更新源
sudo apt-get update
2、安装ssh、ifcnofnig、screen、htop、nvidia-cuda-toolkit等
sudo apt install -y openssh-server SSH服务
sudo apt install -y net-tools 网络工具包,如ifconfig
sudo apt install -y nvidia-cuda-toolkit CUDA工具包
sudo apt install -y screen 多用户会话
sudo apt install -y -y htop 系统监测,如CPU、内存
sudo apt install -y gcc+ 编译
sudo apt install -y make 编译
3、安装pip3
sudo apt install python3-pip
#设置为国内源
pip3 install pip -U
pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
4、安装torch CUDA 11.8
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
5、安装其他依赖库
将下面的依赖保存为pip.txt,然后进行执行
gitpython
ipython # interactive notebook
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.1
Pillow>=7.1.2
psutil # system resources
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
thop>=0.1.1 # FLOPs computation
tqdm>=4.64.0
tensorboard>=2.4.1
pandas>=1.1.4
seaborn>=0.11.0
easydict
gdown
lap
filterpy
onnx>=1.9.0
export
tensorrt
pycuda
jwt
python-multipart
uvicorn
pyqt5
loguru
xlrd >= 2.0.1
执行命令,安装以上全部依赖
pip3 install -r pip.txt
二、安装驱动、CUDA、CUDNN、Tensort
1、安装RTX4090驱动
下载地址:Linux x64 (AMD64/EM64T) Display Driver | 525.125.06 | Linux 64-bit | NVIDIA
执行命令安装:
sudo sh NVIDIA-Linux-x86_64-535.54.03.run
2、安装CUDA 12.2
下载地址:https://developer.nvidia.com/cuda-toolkit-archive
执行命令,下载本地安装包
wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run
sudo sh cuda_12.2.0_535.54.03_linux.run
如果报错:请先切换为命令行,然后重启reboot系统后再执行即可
sudo systemctl set-default multi-user.target 命令行模式
sudo systemctl set-default graphical.target 图形化模式
安装完毕后,默认的路径为
export CUDA_INC_DIR=/usr/local/cuda/include
export LD_LIBRARY_PATH=/usr/local/cuda/lib64
export PATH=/usr/local/cuda/bin:$PATH
3、安装CUDNN v8.9.2 for CUDA 12.X
下载地址:https://developer.nvidia.com/rdp/cudnn-archive#a-collapse51b
下载DEB安装包
sudo dpkg -i cudnn-local-repo-ubuntu2004-8.9.2.26_1.0-1_amd64.deb
报错:key,则需要先拷贝key到指定目录“cp .... key",然后再执行安装包
4、安装Tensort TensorRT 8.6 GA for x86_64
下载地址:Log in | NVIDIA Developer
https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/secure/8.6.1/local_repos/nv-tensorrt-local-repo-ubuntu2204-8.6.1-cuda-12.0_1.0-1_amd64.deb
下载DEB安装包
sudo dpkg -i nv-tensorrt-local-repo-ubuntu2004-8.6.1-cuda-12.0_1.0-1_amd64.deb
报错:key,则需要先拷贝key到指定目录“cp .... key",然后再执行安装包
三、安装torchnvjpeg、torch2trt、pycuda
1、安装torchnvjpeg
下载地址:GitHub - itsliupeng/torchnvjpeg: Decode JPEG image on GPU using PyTorch
git clone https://github.com/itsliupeng/torchnvjpeg.git
#先编译wheel成安装包,然后再安装whl文件
python3 setup.py bdist_wheel
cd dist
pip3 install torchnvjpeg.xxxxx
#或者
pip3 install 5.torchnvjpeg-0.1.0-cp38-cp38-linux_x86_64.whl
2、安装torch2trt
下载地址:GitHub - NVIDIA-AI-IOT/torch2trt: An easy to use PyTorch to TensorRT converter
git clone https://github.com/NVIDIA-AI-IOT/torch2trt.git
#先编译wheel成安装包,然后再安装whl文件
python3 setup.py bdist_wheel
cd dist
pip3 install torch2trt.xxxxx
#或者
pip3 install 6.torch2trt-0.4.0-py3-none-any.whl
3、安装pycuda
下载地址:GitHub - inducer/pycuda: CUDA integration for Python, plus shiny features
git clone https://github.com/inducer/pycuda.git
python3 setup.py bdist_wheel
cd dist
pip3 install pycuda.xxxxx
#或者
pip3 install 7.pycuda-2022.2.2-cp38-cp38-linux_x86_64.whl
#或者
pip3 install pycuda
报错:提示g++等编译错误、nvcc错误等
sudo apt install nvidia-cuda-toolkit
设置正确的环境变量 export CPATH=:/usr/local/cuda-12.2/bin:/usr/local/cuda-12.2/include:/usr/local/cuda-12.2/