Pandas vs SQL,招招经典!

本文通过实例对比Pandas和SQL在数据查询、分组聚合、JOIN操作及数据处理上的应用,帮助读者快速掌握两者间的相似性和转换技巧。

8329974890de7abe4b3064ba6b87e3ad.png

Pandas 和 SQL 有很多相似之处,都是对二维表的数据进行查询、处理,都是数据分析中常用的工具。

对于只会 Pandas 或只会 SQL 的朋友,可以通过今天例子快速学会另一个。


1. 数据查询

首先,读取数据

import pandas as pd
import numpy as np

tips = pd.read_csv('tips.csv')

f3e19602089cee181788914112860b3d.png
tips
1.1 查询列

查询 total_billtip 两列

tips[["total_bill", "tip"]]

用 SQL 实现:

select total_bill, tip
from tips;
1.2 增加列

查询结果中,新增一列tip_rate

tips['tip_rate'] = tips["tip"] / tips["total_bill"]

用 SQL 实现:

select *, tip/total_bill as tip_rate
from tips;
1.3 筛选条件

查询 time列等于Dinner并且tip列大于5的数据

tips[(tips["time"] == "Dinner") & (tips["tip"] > 5.00)]

用 SQL 实现:

select *
from tips
where time = 'Dinner' and tip > 5.00;

2. 分组聚合

按照某列分组计数

tips.groupby("sex").size()

'''
sex
Female     87
Male      157
dtype: int64
'''

用 SQL 实现:

select sex, count(*)
from tips
group by sex;

按照多列聚合多个值

tips.groupby(["smoker", "day"]).agg({"tip": [np.size, np.mean]})

用 SQL 实现:

select smoker, day, count(*), avg(tip)
from tips
group by smoker, day;

3. join

构造两个临时DataFrame

df1 = pd.DataFrame({"key": ["A", "B", "C", "D"], "value": np.random.randn(4)})
df2 = pd.DataFrame({"key": ["B", "D", "D", "E"], "value": np.random.randn(4)})

先用 Pandas 分别实现inner joinleft joinright joinfull join

# inner join
pd.merge(df1, df2, on="key")

# left join
pd.merge(df1, df2, on="key", how="left")

# inner join
pd.merge(df1, df2, on="key", how="right")

# inner join
pd.merge(df1, df2, on="key", how="outer")

用 SQL 分别实现:

# inner join
select *
from df1 inner join df2
on df1.key = df2.key;

# left join
select *
from df1 left join df2
on df1.key = df2.key;

# right join
select *
from df1 right join df2
on df1.key = df2.key;

# full join
select *
from df1 full join df2
on df1.key = df2.key;
4. union

将两个表纵向堆叠

pd.concat([df1, df2])

用 SQL 实现:

select *
from df1

union all

SELECT *
from df2;

将两个表纵向堆叠并去重

pd.concat([df1, df2]).drop_duplicates()

用 SQL 实现:

select *
from df1

union

SELECT *
from df2;

5. 开窗

tipsday列取值相同的记录按照total_bill排序。

(tips.assign(
        rn=tips.sort_values(["total_bill"], ascending=False)
        .groupby(["day"])
        .cumcount()
        + 1
    )
    .sort_values(["day", "rn"])
)

用 SQL 实现:

select
    *,
    row_number() over(partition by day order by total_bill desc) as rn
from tips t

day列取值相同的记录会被划分到同一个窗口内,并按照total_bill排序,窗口之间的数据互不影响,这类操作便被称为开窗

今天的内容就到这里啦。通过几个简单的实践案例大家可以直观感受下 Pandas 和 SQL 在数据处理上的相似之处。

推荐阅读:
入门: 最全的零基础学Python的问题  | 零基础学了8个月的Python  | 实战项目 |学Python就是这条捷径
干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 |   从万众期待到口碑扑街!唐探3令人失望  | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影
趣味:弹球游戏  | 九宫格  | 漂亮的花 | 两百行Python《天天酷跑》游戏!
AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影
小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!|  再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|

年度爆款文案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值