POJ To the Max 1050 (矩阵求和)动态规划算法

问题描述

原题链接
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

算法分析

动态规划算法,用a[i][j]表示第j列的1到i行元素的和,所以a[i][j]就组成了一个一维数组,转化成了求一维子段和的问题。设C[i]为以i结尾的最大子段和,那对于C[i]而言只有两种情况,如果C[i - 1] > 0, 那么C[i] = C[i - 1] + W[i];如果C[i - 1] <=0,C[i] = W[i],然后求出C数组中的最大值即可。对应到这个问题上,W[i]= a[j][z] - a[i][z],所以如果b[z - 1] >= 0,b[z] = b[z - 1] + a[j][z] - a[i][z];如果b[z - 1] < 0,b[z] = a[j][z] - a[i][z];

代码实现

#include<iostream>  
#include<cstring>  
using namespace std;
int main() 
{
	int N, a[100][100] = {0}, b[100] = { 0 };
	int num = a[1][1];
	cin >> N;
	for (int i = 1; i <= N; ++i)
	{
		for (int j = 1; j <= N; ++j)
		{
			cin >> a[i][j];
			a[i][j] += a[i - 1][j];
		}
	}
	
	for (int i = 0; i <= N - 1; ++i)
	{
		for (int j = i + 1; j <= N; ++j)
		{
			for (int k = 1; k <= N; ++k)
			{
				if (b[k - 1] >= 0)
					b[k] = b[k - 1] + a[j][k] - a[i][k];
				else
					b[k] = a[j][k] - a[i][k];
				if (num < b[k])
					num = b[k];
			}
		}
	}
	cout << num << endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值