Unique Paths II
A.题意
Follow up for “Unique Paths”:
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
There is one obstacle in the middle of a 3x3 grid as illustrated below.
Note: m and n will be at most 100.
这道题是前面提到过的Unique Path的拓展,这里遇到1就不能走过去了,还是和之前一样让你求总的方法数
B.思路
这道题目其实就遇到1时那一个格子方法数置0,递推公式一样,然后初始化的时候注意前面是不是有1,有的话后面全部置0.
C.代码实现
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
if (obstacleGrid.empty() || obstacleGrid[0].empty() || obstacleGrid[0][0] == 1)
{
return 0;
}
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int> > grid(m, vector<int>(n, 0));
for (int i = 0;i < m;i++)
{
for (int j = 0;j < n;j++)
{
if (obstacleGrid[i][j] == 1) grid[i][j] = 0;
else if (i == 0 && j == 0) grid[i][j] = 1;
else if (i == 0 && j > 0) grid[i][j] = grid[i][j - 1];
else if (i > 0 && j == 0) grid[i][j] = grid[i - 1][j];
else grid[i][j] = grid[i - 1][j] + grid[i][j - 1];
}
}
return grid[m - 1][n - 1];
}
};