(heu step 6.1.1)Constructing Roads(最小生成树模板题:求让n个点连通的最小费用)

本文探讨了最小生成树算法在解决图论问题中的应用,具体介绍了如何使用Kruskal算法构建最小生成树,并通过实例展示了算法的具体实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

Constructing Roads

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 207 Accepted Submission(s): 135
 
Problem Description
There are N villages, which are numbered from 1 to N, and you should build some roads such that every two villages can connect to each other. We say two village A and B are connected, if and only if there is a road between A and B, or there exists a village C such that there is a road between A and C, and C and B are connected. 

We know that there are already some roads between some villages and your job is the build some roads such that all the villages are connect and the length of all the roads built is minimum.
 
Input
The first line is an integer N (3 <= N <= 100), which is the number of villages. Then come N lines, the i-th of which contains N integers, and the j-th of these N integers is the distance (the distance should be an integer within [1, 1000]) between village i and village j.

Then there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each line contains two integers a and b (1 <= a < b <= N), which means the road between village a and village b has been built.
 
Output
You should output a line contains an integer, which is the length of all the roads to be built such that all the villages are connected, and this value is minimum. 
 
Sample Input
3
0 990 692
990 0 179
692 179 0
1
1 2
 
Sample Output
179
 
 
Source
kicc
 
Recommend
Eddy
 



题目分析:

               kruscal求最小生成树,简单题。需要注意一下的以下的情况:

1)有的路已经修好的处理方式:将该条边的权值置为0.

map[a][b] = map[b][a] = 0;//对于已经存在的边,我们把他的权值置为0即可


2)连接信息由矩阵转换成边的形式。

int cnt = 1;
for(i = 1 ; i <= n ; ++i){//将链接信息有矩阵的形式转换成边的形式
for(j = 1 ; j <= i ; ++j){
edges[cnt].begin = i;
edges[cnt].end = j;
edges[cnt++].weight = map[i][j];
}
}


代码如下:

/*
 * a.cpp
 *
 *  Created on: 2015年3月9日
 *      Author: Administrator
 */

#include <iostream>
#include <cstdio>
#include <algorithm>


using namespace std;

const int maxn = 101;

struct Edge{//边
	int begin;//起点
	int end;//终点
	int weight;//边的权值
}edges[maxn*maxn];

int father[maxn];
int map[maxn][maxn];

/**
 * 求包含a结点的并查集的根
 */
int find(int a){
	if(a == father[a]){
		return a;
	}

	return father[a] = find(father[a]);
}

/**
 * 使用kruscal来求最小生成树.
 * 模板
 */
int kruscal(int count){
	int i;
	for(i = 1 ; i < maxn ; ++i){
		father[i] = i;
	}

	int sum = 0;

	for(i = 1 ; i <= count ; ++i){
		int fx = find(edges[i].begin);
		int fy = find(edges[i].end);

		if(fx != fy){//如果他们还没有连通
			father[fx] = fy;//则让他们连通
			sum += edges[i].weight;//将这条路的费用加到修路总费用中
		}
	}

	return sum;
}

bool cmp(const Edge& a, const Edge& b){
	return a.weight < b.weight;
}

int main(){
	int n;
	while(scanf("%d",&n)!=EOF){
		int i;
		int j;
		for(i = 1 ; i <= n ; ++i){//一矩阵的形式读入连接信息
			for(j = 1 ; j <= n ; ++j){
				scanf("%d",&map[i][j]);
			}
		}

		int m;
		scanf("%d",&m);
		while(m--){
			int a,b;
			scanf("%d%d",&a,&b);
			map[a][b] = map[b][a] = 0;//对于已经存在的边,我们把他的权值置为0即可
		}

		int cnt = 1;
		for(i = 1 ; i <= n ; ++i){//将链接信息有矩阵的形式转换成边的形式
			for(j = 1 ; j <= i ; ++j){
				edges[cnt].begin = i;
				edges[cnt].end = j;
				edges[cnt++].weight = map[i][j];
			}
		}

		cnt -= 1;//用于处理++导致的边数多1的情况

		sort(edges+1,edges+1+cnt,cmp);//这就体现了kruscal中的贪心的思想

		printf("%d\n",kruscal(cnt));
	}

	return 0;
}




                




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

帅气的东哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值