#include <iostream>
#include <cstdio>
#define maxn 80010
#define Fup(i, s, t) for (int i = s; i <= t; i ++)
#define Fdn(i, s, t) for (int i = s; i >= t; i --)
using namespace std;
struct node {
int ls;//左端空区间的长度
int rs;//右端空区间的长度
int ms;//最长子区间的长度
int pos;//开始位置
int mark;//懒惰标记(0:未定 , 1:全空 2:全满)
} tree[4 * maxn];//线段树
int n, m;
void build_tree(int l, int r, int i) {//构建全空的线段树
tree[i].ls = tree[i].rs = tree[i].ms = r - l + 1;
tree[i].pos = l;
if (l == r)
return;
int mid = (l + r) / 2;
build_tree(l, mid, i + i);
build_tree(mid + 1, r, i + i + 1);
}
bool all_space(int l, int r, int i) {//判断根为i的区间[l,r]是否全空...
if (tree[i].ls == r - l + 1)
return 1;
return 0;
}
void update(int l, int r, int i) {//通过标记法维护线段树..
if (!tree[i].mark)
return;
if (tree[i].mark == 1) {
int len = r - l + 1;
tree[i + i].ls = tree[i + i].rs = tree[i + i].ms = (len + 1) / 2;
tree[i + i].pos = l;
tree[i + i + 1].ls = tree[i + i + 1].rs = tree[i + i + 1].ms = len / 2;
tree[i + i + 1].pos = (l + r) / 2 + 1;
tree[i + i].mark = tree[i + i + 1].mark = 1;
} else {
tree[i + i].ls = tree[i + i].rs = tree[i + i].ms = 0;
tree[i + i].pos = l;
tree[i + i + 1].ls = tree[i + i + 1].rs = tree[i + i + 1].ms = 0;
tree[i + i + 1].pos = (l + r) / 2 + 1;
tree[i + i].mark = tree[i + i + 1].mark = 2;
}
tree[i].mark = 0;
}
/**
* 查询根为i的区间[l,r]是否存在长度为d的区间..
* 如果存在则返回返回其左指针..
* 否则返回0
*/
int query(int d, int l, int r, int i) {
update(l, r, i);
if (tree[i].ms < d)
return 0;
if (tree[i].ms == d)
return tree[i].pos;
int mid = (l + r) / 2;
if (tree[i + i].ms >= d)
return query(d, l, mid, i + i);
if (tree[i + i].rs + tree[i + i + 1].ls >= d)
return mid - tree[i + i].rs + 1;
return query(d, mid + 1, r, i + i + 1);
}
/**
* 在根为i的区间[l,r]上插入或删除子区间[tl,tr],插删标记为flag
*/
void change(int tl, int tr, int l, int r, int i, bool flag) {
if (tl > r || tr < l)
return;
if (tl <= l && r <= tr) {
if (flag) {
tree[i].ls = tree[i].rs = tree[i].ms = 0;
tree[i].pos = l;
tree[i].mark = 2;
} else {
tree[i].ls = tree[i].rs = tree[i].ms = r - l + 1;
tree[i].pos = l;
tree[i].mark = 1;
}
return;
}
update(l, r, i);
int mid = (l + r) / 2;
change(tl, tr, l, mid, i + i, flag);
change(tl, tr, mid + 1, r, i + i + 1, flag);
tree[i].ls = tree[i + i].ls;
if (all_space(l, mid, i + i))
tree[i].ls += tree[i + i + 1].ls;
tree[i].rs = tree[i + i + 1].rs;
if (all_space(mid + 1, r, i + i + 1))
tree[i].rs += tree[i + i].rs;
tree[i].ms = max(tree[i + i].rs + tree[i + i + 1].ls,
max(tree[i + i].ms, tree[i + i + 1].ms));
if (tree[i].ms == tree[i + i].ms)
tree[i].pos = tree[i + i].pos;
else if (tree[i].ms == tree[i + i].rs + tree[i + i + 1].ls)
tree[i].pos = mid - tree[i + i].rs + 1;
else
tree[i].pos = tree[i + i + 1].pos;
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
memset(tree, 0, sizeof(tree));
build_tree(1, n, 1);
int i;
for (i = 1; i <= m; ++i) {
int kind;
scanf("%d", &kind);
if (kind == 1) {
int d;
scanf("%d", &d);
int ans = query(d, 1, n, 1);
printf("%d\n", ans);
if (ans) {
change(ans, ans + d - 1, 1, n, 1, 1);
}
} else {
int x, d;
scanf("%d%d", &x, &d);
change(x, x + d - 1, 1, n, 1, 0);
}
}
}
return 0;
}

本文介绍了一种使用线段树进行区间更新和查询的高效算法,并利用懒惰标记减少不必要的操作。该算法适用于需要频繁进行区间修改和查询的问题。
584

被折叠的 条评论
为什么被折叠?



