import pandas as pd
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2001],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9]}
frame = pd.DataFrame(data)
frame
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| pop | state | year |
---|
0 | 1.5 | Ohio | 2000 |
---|
1 | 1.7 | Ohio | 2001 |
---|
2 | 3.6 | Ohio | 2002 |
---|
3 | 2.4 | Nevada | 2001 |
---|
4 | 2.9 | Nevada | 2001 |
---|
pd.DataFrame(data, columns=['year', 'state', 'pop'])
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| year | state | pop |
---|
0 | 2000 | Ohio | 1.5 |
---|
1 | 2001 | Ohio | 1.7 |
---|
2 | 2002 | Ohio | 3.6 |
---|
3 | 2001 | Nevada | 2.4 |
---|
4 | 2001 | Nevada | 2.9 |
---|
frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
index=['one', 'two', 'three', 'four', 'five'])
frame2
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| year | state | pop | debt |
---|
one | 2000 | Ohio | 1.5 | NaN |
---|
two | 2001 | Ohio | 1.7 | NaN |
---|
three | 2002 | Ohio | 3.6 | NaN |
---|
four | 2001 | Nevada | 2.4 | NaN |
---|
five | 2001 | Nevada | 2.9 | NaN |
---|
frame2.columns
Index([‘year’, ‘state’, ‘pop’, ‘debt’], dtype=’object’)
frame2['state']
one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
Name: state, dtype: object
frame2.year
one 2000
two 2001
three 2002
four 2001
five 2001
Name: year, dtype: int64
frame2.ix['three']
year 2002
state Ohio
pop 3.6
debt NaN
Name: three, dtype: object
frame2['debt'] = 16.5
frame2
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| year | state | pop | debt |
---|
one | 2000 | Ohio | 1.5 | 16.5 |
---|
two | 2001 | Ohio | 1.7 | 16.5 |
---|
three | 2002 | Ohio | 3.6 | 16.5 |
---|
four | 2001 | Nevada | 2.4 | 16.5 |
---|
five | 2001 | Nevada | 2.9 | 16.5 |
---|
import numpy as np
frame2['debt'] = np.arange(5.)
frame2
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| year | state | pop | debt |
---|
one | 2000 | Ohio | 1.5 | 0.0 |
---|
two | 2001 | Ohio | 1.7 | 1.0 |
---|
three | 2002 | Ohio | 3.6 | 2.0 |
---|
four | 2001 | Nevada | 2.4 | 3.0 |
---|
five | 2001 | Nevada | 2.9 | 4.0 |
---|
val = pd.Series([-1.2, -1.5, -1.7], index = ['two', 'four', 'five'])
frame2['debt'] = val
frame2
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| year | state | pop | debt |
---|
one | 2000 | Ohio | 1.5 | NaN |
---|
two | 2001 | Ohio | 1.7 | -1.2 |
---|
three | 2002 | Ohio | 3.6 | NaN |
---|
four | 2001 | Nevada | 2.4 | -1.5 |
---|
five | 2001 | Nevada | 2.9 | -1.7 |
---|
frame2['eastern'] = frame2.state == 'Ohio'
frame2
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| year | state | pop | debt | eastern |
---|
one | 2000 | Ohio | 1.5 | NaN | True |
---|
two | 2001 | Ohio | 1.7 | -1.2 | True |
---|
three | 2002 | Ohio | 3.6 | NaN | True |
---|
four | 2001 | Nevada | 2.4 | -1.5 | False |
---|
five | 2001 | Nevada | 2.9 | -1.7 | False |
---|
del frame2['eastern']
frame2
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| year | state | pop | debt |
---|
one | 2000 | Ohio | 1.5 | NaN |
---|
two | 2001 | Ohio | 1.7 | -1.2 |
---|
three | 2002 | Ohio | 3.6 | NaN |
---|
four | 2001 | Nevada | 2.4 | -1.5 |
---|
five | 2001 | Nevada | 2.9 | -1.7 |
---|
frame2.columns
Index([‘year’, ‘state’, ‘pop’, ‘debt’], dtype=’object’)
pop = {'Nevada': {2001: 2.4, 2002: 2.9},
'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
frame3 = pd.DataFrame(pop)
frame3
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| Nevada | Ohio |
---|
2000 | NaN | 1.5 |
---|
2001 | 2.4 | 1.7 |
---|
2002 | 2.9 | 3.6 |
---|
frame3.T
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| 2000 | 2001 | 2002 |
---|
Nevada | NaN | 2.4 | 2.9 |
---|
Ohio | 1.5 | 1.7 | 3.6 |
---|
pd.DataFrame(pop, index=[2001, 2002, 2003])
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| Nevada | Ohio |
---|
2001 | 2.4 | 1.7 |
---|
2002 | 2.9 | 3.6 |
---|
2003 | NaN | NaN |
---|
pdata = {'Ohio': frame3['Ohio'][:-1],
'Nevadd': frame3['Nevada'][:2]}
pd.DataFrame(pdata)
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| Nevadd | Ohio |
---|
2000 | NaN | 1.5 |
---|
2001 | 2.4 | 1.7 |
---|
frame3.index.name = 'year'
frame3.columns.name = 'state'
frame3
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
state | Nevada | Ohio |
---|
year | | |
---|
2000 | NaN | 1.5 |
---|
2001 | 2.4 | 1.7 |
---|
2002 | 2.9 | 3.6 |
---|
frame3.values
array([[ nan, 1.5],
[ 2.4, 1.7],
[ 2.9, 3.6]])
frame2
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
| year | state | pop | debt |
---|
one | 2000 | Ohio | 1.5 | NaN |
---|
two | 2001 | Ohio | 1.7 | -1.2 |
---|
three | 2002 | Ohio | 3.6 | NaN |
---|
four | 2001 | Nevada | 2.4 | -1.5 |
---|
five | 2001 | Nevada | 2.9 | -1.7 |
---|
frame2.values
array([[2000, 'Ohio', 1.5, nan],
[2001, 'Ohio', 1.7, -1.2],
[2002, 'Ohio', 3.6, nan],
[2001, 'Nevada', 2.4, -1.5],
[2001, 'Nevada', 2.9, -1.7]], dtype=object)