对n个元素进行全排列共n!个
先确定第1位(从1开始计数),第1位有n种情况(排头元素分别与后续元素交换)
对后边n-1位进行全排列,确定第2位
对后面n-2位进行全排列,确定第3位
......
到最后一位时,因为只剩下一个元素,即只有一种情况。
#include <iostream>
void swap(int& a, int& b)
{
if (&a != &b)
{
a = a ^ b;
b = a ^ b;
a = a ^ b;
}
}
void permutate(int arr[], int begin, int n, int& sum)
{
if (begin+1 == n)
{
++sum;
for (int i = 0; i < n; ++i)
std::cout << arr[i] << " ";
std::cout << std::endl;
}
else
{
for (int i = begin; i < n; ++i)
{
swap(arr[begin], arr[i]); // 交换
permutate(arr, begin + 1, n, sum); // 递归
swap(arr[begin], arr[i]); // 复原
}
}
}
n个数中任意m个数的全排列,共n!/(n-m)!个
void permutate(int arr[], int begin, int n, int m, int& sum)
{
if (begin == m)
{
++sum;
for (int i = 0; i < m; ++i)
std::cout << arr[i] << " ";
std::cout << std::endl;
}
else
{
for (int i = begin; i < n; ++i)
{
swap(arr[begin], arr[i]);
permutate(arr, begin + 1, n, m, sum);
swap(arr[begin], arr[i]);
}
}
}
若n元集合中存在第1类元素为m1个(同类或者重复),第2类元素为m2个,..... ,第k类元素为mk个;
除这些重复元素之外,其余元素彼此各异,那么这个集合上一共存在n!/(m1!m2!...mk!)种不同的排列。
核心思想:
(1)确定排头元素A
(2)确定后续待交换元素B
(3)判断[A,B)之间是否出现过B,若出现过,则跳过此元素,否则,继续交换,递归,复原操作
// if there has same value(arr[t]) among arr[begin] to arr[t-1]
bool recur(int arr[], int begin, int t)
{
for (int i = begin; i < t; ++i)
if (arr[i] == arr[t])
return true;
return false;
}
void perm3(int arr[], int begin, int n, int& sum)
{
if (begin+1 == n)
{
++sum;
for (int i = 0; i < n; ++i)
std::cout << arr[i] << " ";
std::cout << std::endl;
}
else
{
for (int i = begin; i < n; ++i)
{
if (!recur(arr, begin, i))
{
swap(arr[begin], arr[i]);
perm3(arr, begin + 1, n, sum);
swap(arr[begin], arr[i]);
}
}
}
}
int main()
{
int arr[] = {1, 2, 3};
int sum1 = 0, sum2 = 0, sum3 = 0;
int n = sizeof(arr) / sizeof(int), m = 2;
permutate(arr, 0, n, sum1);
std::cout << sum1 << std::endl;
std::cout << "choose " << m << " data from " << n << " data" << std::endl;
permutate(arr, 0, n, m, sum2);
std::cout << sum2 << std::endl;
std::cout << "test duplicate numbers" << std::endl;
int arr3[] = { 1, 1, 2};
n = sizeof(arr3) / sizeof(int);
perm3(arr3, 0, n, sum3);
std::cout << sum3 << std::endl;
return 0;
}
1 2 3
1 3 2
2 1 3
2 3 1
3 2 1
3 1 2
6
choose 2 data from 3 data
1 2
1 3
2 1
2 3
3 2
3 1
6
test duplicate numbers
1 1 2
1 2 1
2 1 1
3
n个数中任意m个数的组合,共n!/(m!(n-m)!)个
n个数的全子集类似n位二进制数中1的位置与数量
组合问题可转化为n位二进制数中1的数量为m的问题。
#include <iostream>
int comb(int n, int m)
{
int sum = 0, t = 0, num = 0;
for (int i = 0; i < (1 << n); ++i)
{
t = i;
num = 0;
// 计算n位二进制数中1的个数
while (t)
{
t = t & (t - 1);
++num;
}
if (num == m)
{
for (int j = 0; j < n; ++j)
if (i & (1 << j))
std::cout << j << " ";
std::cout << std::endl;
++sum;
}
}
return sum;
}
int main()
{
std::cout << comb(6, 5) << std::endl;
return 0;
}
0 1 2 3 4
0 1 2 3 5
0 1 2 4 5
0 1 3 4 5
0 2 3 4 5
1 2 3 4 5
6