E. Riding in a Lift(Codeforces Round #274)

本文探讨了一个特定场景下的路径规划问题,即在禁止访问某楼层的情况下,如何计算从指定起点进行连续多次电梯移动的有效路径数量。文章通过动态规划的方法解决了该问题,并给出了具体的实现代码。
E. Riding in a Lift
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let's number the floors from bottom to top with integers from 1 to n. Now you're on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 50001 ≤ k ≤ 50001 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1
output
2
input
5 2 4 2
output
2
input
5 3 4 1
output
0
Note

Two sequences p1, p2, ..., pk and q1, q2, ..., qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2)(1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.

  1. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.


上次的cf今天才补题o(╯□╰)o,给n层楼,在a层开始,不能在b层停,且当在x层去y层时,|x - y| < |x - b|,求执行k
 
次的方案数。

有两种情况,dp[i][j],i为第i次,j为当前停的层数。

 当a<b时,此时所有的x不会超过b,当第i次停在j层,第i-1次肯定在[0,(b+j-1)/2],左端点不难想到,右端点推导过程:

设第i-1次停在x层,则第i层所有大于x小于b的点都可以取,我们只考虑小于x的点,则x-j<=b-x-1,

整理得:   x<=(b+j-1)/2; 所以转移方程为:dp[i][j]=(sum[i-1][(j+b-1)/2]-dp[i-1][j]+mod)%mod;

当a>b时,同理得dp[i][j]=((sum[i-1][n]-sum[i-1][(j+b)/2]+mod)%mod-dp[i-1][j]+mod)%mod;

代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=5000+100;
const int mod=1000000000+7;
int dp[maxn][maxn];
int sum[maxn][maxn];
int n;
void getsum(int x)
{
    for(int i=1;i<=n;i++)
    {
    sum[x][i]=(sum[x][i-1]+dp[x][i])%mod;
  //  printf("%I64d\n",sum[x][i]);
    }
}
int main()
{
    int a,b,k;
    scanf("%d%d%d%d",&n,&a,&b,&k);
    memset(dp,0,sizeof(dp));
    memset(sum,0,sizeof(sum));
    dp[0][a]=1;
    if(a<b)
    {
        getsum(0);
       for(int i=1;i<=k;i++)
       {
        for(int j=1;j<b;j++)
        {
           dp[i][j]=(sum[i-1][(j+b-1)/2]-dp[i-1][j]+mod)%mod;
          // printf("%I64d ",dp[i][j]);
        }
      // printf("\n");
        getsum(i);
       }
    }
    else
    {
        getsum(0);
        for(int i=1;i<=k;i++)
        {
            for(int j=b+1;j<=n;j++)
            {
                //printf("%d %d\n",sum[i-1])
                dp[i][j]=((sum[i-1][n]-sum[i-1][(j+b)/2]+mod)%mod-dp[i-1][j]+mod)%mod;
               // printf("%d ",dp[i][j]);
            }
            getsum(i);
        }
    }
    long long ans=0;
    for(int i=1;i<=n;i++)
    {
    ans=(ans+dp[k][i])%mod;
    //printf("%d ",dp[k][i]);
    }
    printf("%I64d\n",ans);
    return 0;
}


为下面的代码 每行代码都 添加中文注释 , 每个函数都进行详细注释 , 代码的算法原理也写在注释中 , 原来的英文注释翻译成中文注释 : ```from sentence_transformers.cross_encoder import CrossEncoder # 1. Load a pretrained CrossEncoder model model = CrossEncoder("cross-encoder/stsb-distilroberta-base") # We want to compute the similarity between the query sentence... query = "A man is eating pasta." # ... and all sentences in the corpus corpus = [ "A man is eating food.", "A man is eating a piece of bread.", "The girl is carrying a baby.", "A man is riding a horse.", "A woman is playing violin.", "Two men pushed carts through the woods.", "A man is riding a white horse on an enclosed ground.", "A monkey is playing drums.", "A cheetah is running behind its prey.", ] # 2. We rank all sentences in the corpus for the query ranks = model.rank(query, corpus) # Print the scores print("Query: ", query) for rank in ranks: print(f"{rank[&#39;score&#39;]:.2f}\t{corpus[rank[&#39;corpus_id&#39;]]}") """ Query: A man is eating pasta. 0.67 A man is eating food. 0.34 A man is eating a piece of bread. 0.08 A man is riding a horse. 0.07 A man is riding a white horse on an enclosed ground. 0.01 The girl is carrying a baby. 0.01 Two men pushed carts through the woods. 0.01 A monkey is playing drums. 0.01 A woman is playing violin. 0.01 A cheetah is running behind its prey. """ # 3. Alternatively, you can also manually compute the score between two sentences import numpy as np sentence_combinations = [[query, sentence] for sentence in corpus] scores = model.predict(sentence_combinations) # Sort the scores in decreasing order to get the corpus indices ranked_indices = np.argsort(scores)[::-1] print("Scores:", scores) print("Indices:", ranked_indices) """ Scores: [0.6732372, 0.34102544, 0.00542465, 0.07569341, 0.00525378, 0.00536814, 0.06676237, 0.00534825, 0.00516717] Indices: [0 1 3 6 2 5 7 4 8] """```
03-10
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值