CodeForces 639E

CodeForces 639E Bear and Paradox

题目描述:

你现在在打一场比赛,一共有  N N 道题,为了完成第  i i 道题你需要连续花费  ti ti 分钟的时间。

令  T=iti T=∑iti ,那么在第  x x 分钟结束时完成第  i i 道题将会使你获得  pi(1cxT) pi⋅(1−c⋅xT) ,其中  c[0,1] c∈[0,1] 是一个实数常量。在任何情况下,你都会采取最优的策略来做题,使得分数之和最大。对于一个  c c ,可能存在多种不同的最优策略。

求最大的  c c ,使得不存在这样一种最优策略:存在一对题目  (i,j) (i,j) ,满足  pi<pj pi<pj ,且第  i i 题获得的分数严格大于第  j j 题的。

题解:

观察式子发现,最优策略与  c c 无关,且永远是按照  piti piti 递增的顺序做题。于是,对于每一道题,我们可以处理出它的最大和最小可能完成时间是多少。

之后二分答案  c c ,如果有一道题,它的最小可能得分(这个可以直接利用我们预处理的东西算出来)严格小于之前  p p 值比它小的题目的最大可能得分(也可以算出来),那么这个  c c 值就是不可行的。

具体实现细节参见代码。

题目链接: vjudge 原网站

代码:


#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;

#define MAXN 150010

#define EPS (1e-8)

#define INF 1e10

static struct tProblem
{
    long long p, t, sum_t, max_t, min_t;
} val[MAXN];
static int N;
static long long T;

inline bool cmp1(const tProblem x, const tProblem y)
{
    return x.p * y.t > y.p * x.t;
}

inline bool cmp2(const tProblem x, const tProblem y)
{
    return x.p < y.p;
}

int main()
{
    scanf("%d", &N);
    for (int i = 1; i <= N; i++) scanf("%lld", &val[i].p);
    for (int i = 1; i <= N; i++) scanf("%lld", &val[i].t), T += val[i].t;
    sort(val + 1, val + N + 1, cmp1);
    for (int i = 1; i <= N; i++) val[i].sum_t = val[i-1].sum_t + val[i].t;
    for (int i = 1, j; i <= N; i = j)
    {
        for (j = i; j <= N && val[i].p * val[j].t == val[j].p * val[i].t; j++);
        for (int k = i; k < j; k++)
            val[k].min_t = val[i-1].sum_t + val[k].t, val[k].max_t = val[j-1].sum_t;
    }
    sort(val + 1, val + N + 1, cmp2);
    double l = 0.0, r = 1.0;
    while (r - l > EPS)
    {
        double mid = (l + r) / 2, mx = -INF, used_mx = -INF;
        int flg = 1;
        for (int i = 1; flg && i <= N; i++)
        {
            if (val[i].p != val[i-1].p) used_mx = mx;
            if ((1.0 - mid * val[i].max_t / T) * val[i].p < used_mx)
                flg = 0;
            mx = max(mx, (1.0 - mid * val[i].min_t / T) * val[i].p);
        }
        if (flg) l = mid; else r = mid;
    }
    printf("%.10lf\n", l);
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值