Problem Description
Given two positive integers a and b,find suitable X and Y to meet the conditions:
X+Y=a
Least Common Multiple (X, Y) =b
Input
Input includes multiple sets of test data.Each test data occupies one line,including two positive integers a(1≤a≤2*10^4),b(1≤b≤10^9),and their meanings are shown in the description.Contains most of the 12W test cases.
Output
For each set of input data,output a line of two integers,representing X, Y.If you cannot find such X and Y,output one line of "No Solution"(without quotation).
Sample Input
6 8 798 10780
Sample Output
No Solution 308 490思路:
由题意可知:
lcm(x,y)=b;
因为 x*y =gcd(x,y)*lcm(x,y);
所以 x*y =gcd(x,y)*b;
因为 gcd(a,b)=gcd(x,y);
所以 x*y=b*gcd(a,b);
联立 x+y=a;
解个方程就行 ;#include <cstdio> #include <cstring> #include <cmath> int gcd (int m,int n){ int flag; while(n>0){ flag=m%n; m=n; n=flag; } return m; } int main (){ int a,b; while(scanf("%d%d",&a,&b)!=EOF){ int i,j; int c=gcd(a,b); int x,y; int delta= a*a-4*b*c; if(delta<0){ printf("No Solution\n"); continue; } int flag= sqrt(delta); if(flag*flag!=delta||(a-flag)%2!=0){ printf("No Solution\n"); continue; } x=(1*a-sqrt(delta))/2; y=a-x; printf("%d %d\n",x<y?x:y,x<y?y:x); } return 0; }
本文介绍了一种解决特定方程组的方法,即给定两个正整数a和b,寻找合适的X和Y使得X+Y等于a且X和Y的最小公倍数为b。文章提供了一个C++实现的示例程序,并详细解释了如何通过数学关系求解此问题。
974

被折叠的 条评论
为什么被折叠?



