Transformation
Time Limit: 15000/8000 MS (Java/Others) Memory Limit: 65535/65536 K (Java/Others)Total Submission(s): 2374 Accepted Submission(s): 558
Problem Description
Yuanfang is puzzled with the question below:
There are n integers, a 1, a 2, …, a n. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between a x and a y inclusive. In other words, do transformation a k<---a k+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between a x and a y inclusive. In other words, do transformation a k<---a k×c, k = x,x+1,…,y.
Operation 3: Change the numbers between a x and a y to c, inclusive. In other words, do transformation a k<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between a x and a y inclusive. In other words, get the result of a x p+a x+1 p+…+a y p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him.
There are n integers, a 1, a 2, …, a n. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between a x and a y inclusive. In other words, do transformation a k<---a k+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between a x and a y inclusive. In other words, do transformation a k<---a k×c, k = x,x+1,…,y.
Operation 3: Change the numbers between a x and a y to c, inclusive. In other words, do transformation a k<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between a x and a y inclusive. In other words, get the result of a x p+a x+1 p+…+a y p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him.
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
Sample Input
5 5 3 3 5 7 1 2 4 4 4 1 5 2 2 2 5 8 4 3 5 3 0 0
Sample Output
307 7489
Source
传送门:HDU 4578 Transformation
题目大意:
给你一个初始全0的数组。有四种操作:
1.[L,R]范围内的数全部+c
2.[L,R]范围内的数全部*c
3.[L,R]范围内的数全部变为c
4.输出[L,R]范围内的数的k次方和(1 <= k <= 3 )
题目分析:
就是在裸的线段树上稍作变化,注意lazy标记中的乘法标记和加法标记有结合律,然后拆项转换即可。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std ;
#define lson l , m , o << 1
#define rson m + 1 , r , o << 1 | 1
const int mod = 10007 ;
const int maxN = 500000 ;
int sum1[maxN] , sum2[maxN] , sum3[maxN] ;
int add[maxN] , mul[maxN] , set[maxN] ;
void PushUp ( int o ) {
sum1[o] = ( sum1[o << 1] + sum1[o << 1 | 1] ) % mod ;
sum2[o] = ( sum2[o << 1] + sum2[o << 1 | 1] ) % mod ;
sum3[o] = ( sum3[o << 1] + sum3[o << 1 | 1] ) % mod ;
}
void PushDown ( int o , int l , int r ) {
int m = ( l + r ) >> 1 ;
if ( set[o] ) {
set[o << 1] = set[o << 1 | 1] = set[o] ;
add[o << 1] = add[o << 1 | 1] = 0 ;
mul[o << 1] = mul[o << 1 | 1] = 1 ;
sum1[o << 1] = ( m - l + 1 ) * set[o] % mod ;
sum2[o << 1] = sum1[o << 1] * set[o] % mod ;
sum3[o << 1] = sum2[o << 1] * set[o] % mod ;
sum1[o << 1 | 1] = ( r - m ) * set[o] % mod ;
sum2[o << 1 | 1] = sum1[o << 1 | 1] * set[o] % mod ;
sum3[o << 1 | 1] = sum2[o << 1 | 1] * set[o] % mod ;
set[o] = 0 ;
}
if ( add[o] || mul[o] != 1 ) {
add[o << 1] = ( add[o << 1] * mul[o] + add[o] ) % mod ;
mul[o << 1] = mul[o << 1] * mul[o] % mod ;
add[o << 1 | 1] = ( add[o << 1 | 1] * mul[o] + add[o] ) % mod ;
mul[o << 1 | 1] = mul[o << 1 | 1] * mul[o] % mod ;
int _sum1 , _sum2 , _sum3 ;
_sum1 = ( sum1[o << 1] * mul[o] % mod + add[o] * ( m - l + 1 ) % mod ) % mod ;
_sum2 = ( mul[o] * mul[o] % mod * sum2[o << 1] % mod
+ 2 * add[o] % mod * mul[o] % mod * sum1[o << 1] % mod
+ add[o] * add[o] % mod * ( m - l + 1 ) % mod ) % mod ;
_sum3 = ( mul[o] * mul[o] % mod * mul[o] % mod * sum3[o << 1] % mod
+ 3 * mul[o] % mod * mul[o] % mod * add[o] % mod * sum2[o << 1] % mod
+ 3 * mul[o] % mod * add[o] % mod * add[o] % mod * sum1[o << 1] % mod
+ add[o] * add[o] % mod * add[o] % mod * ( m - l + 1 ) % mod ) % mod ;
sum1[o << 1] = _sum1 ;
sum2[o << 1] = _sum2 ;
sum3[o << 1] = _sum3 ;
_sum1 = ( sum1[o << 1 | 1] * mul[o] % mod + add[o] * ( r - m ) % mod ) % mod ;
_sum2 = ( mul[o] * mul[o] % mod * sum2[o << 1 | 1] % mod
+ 2 * add[o] % mod * mul[o] % mod * sum1[o << 1 | 1] % mod
+ add[o] * add[o] % mod * ( r - m ) % mod ) % mod ;
_sum3 = ( mul[o] * mul[o] % mod * mul[o] % mod * sum3[o << 1 | 1] % mod
+ 3 * mul[o] % mod * mul[o] % mod * add[o] % mod * sum2[o << 1 | 1] % mod
+ 3 * mul[o] % mod * add[o] % mod * add[o] % mod * sum1[o << 1 | 1] % mod
+ add[o] * add[o] % mod * add[o] % mod * ( r - m ) % mod ) % mod ;
sum1[o << 1 | 1] = _sum1 ;
sum2[o << 1 | 1] = _sum2 ;
sum3[o << 1 | 1] = _sum3 ;
add[o] = 0 ;
mul[o] = 1 ;
}
}
void Build ( int l , int r , int o ) {
sum1[o] = sum2[o] = sum3[o] = 0 ;
add[o] = set[o] = 0 ;
mul[o] = 1 ;
if ( l == r ) return ;
int m = ( l + r ) >> 1 ;
Build ( lson ) ;
Build ( rson ) ;
}
void Update ( int ch , int v , int L , int R , int l , int r , int o ) {
if ( L <= l && r <= R ) {
int len = r - l + 1 ;
if ( 1 == ch ) {
add[o] = ( add[o] + v ) % mod ;
int _sum1 , _sum2 , _sum3 ;
_sum1 = ( sum1[o] + v * len ) % mod ;
_sum2 = ( sum2[o] + 2 * sum1[o] % mod * v % mod + v * v % mod * len % mod ) % mod ;
_sum3 = ( sum3[o] + 3 * v % mod * v % mod * sum1[o] % mod
+ 3 * v % mod * sum2[o] % mod + v * v % mod * v % mod * len % mod ) % mod ;
sum1[o] = _sum1 ;
sum2[o] = _sum2 ;
sum3[o] = _sum3 ;
}
if ( 2 == ch ) {
mul[o] = mul[o] * v % mod ;
add[o] = add[o] * v % mod ;
sum1[o] = sum1[o] * v % mod ;
sum2[o] = sum2[o] * v % mod * v % mod ;
sum3[o] = sum3[o] * v % mod * v % mod * v % mod ;
}
if ( 3 == ch ) {
set[o] = v ;
add[o] = 0 ;
mul[o] = 1 ;
sum1[o] = v * len % mod ;
sum2[o] = v * sum1[o] % mod ;
sum3[o] = v * sum2[o] % mod ;
}
return ;
}
PushDown ( o , l , r ) ;
int m = ( l + r ) >> 1 ;
if ( L <= m ) Update ( ch , v , L , R , lson ) ;
if ( m < R ) Update ( ch , v , L , R , rson ) ;
PushUp ( o ) ;
}
int Query ( int v , int L , int R , int l , int r , int o ) {
if ( L <= l && r <= R ) {
if ( 1 == v ) return sum1[o] ;
if ( 2 == v ) return sum2[o] ;
if ( 3 == v ) return sum3[o] ;
}
PushDown ( o , l , r ) ;
int ans = 0 , m = ( l + r ) >> 1 ;
if ( L <= m ) ans = ( ans + Query ( v , L , R , lson ) ) % mod ;
if ( m < R ) ans = ( ans + Query ( v , L , R , rson ) ) % mod ;
return ans ;
}
void work () {
int n , m , ch , v , l , r ;
while ( ~scanf ( "%d%d" , &n , &m ) && ( n || m ) ) {
Build ( 1 , n , 1 ) ;
while ( m -- ) {
scanf ( "%d%d%d%d" , &ch , &l , &r , &v ) ;
if ( ch == 4 ) {
int ans = Query ( v , l , r , 1 , n , 1 ) ;
printf ( "%d\n" , ans ) ;
}
else Update ( ch , v , l , r , 1 , n , 1 ) ;
}
}
}
int main () {
work () ;
return 0 ;
}
本文介绍了一种利用线段树解决区间更新及区间求和问题的方法,特别是涉及加法、乘法和置为特定值的操作,并针对不同幂次的求和进行了优化。
529

被折叠的 条评论
为什么被折叠?



