LIVEOIBENCH: CAN LARGE LANGUAGE MODELS OUTPERFORM HUMAN CONTESTANTS IN INFORMATICS OLYMPIADS?

该文章提出了全新的编程基准测试集LiveOIBench,用于评估大型语言模型在信息学奥林匹克竞赛级编程任务中的能力,同时通过对32个主流模型的测试,揭示了当前LLM在复杂编程任务上的表现与局限。

一、文章主要内容

  1. 现有编程基准的不足
    • 缺乏极具挑战性的题目,无法有效测试LLM的高阶编程能力。
    • 测试用例覆盖不全面,存在高假阳性率,导致模型性能评估不准确。
    • 依赖在线平台API,限制了评估的可访问性与可复现性。
    • 评估指标单一(如仅用通过率),无法细致洞察模型能力差异。
  2. LiveOIBench基准的核心构成
    • 题目来源:源自2023-2025年全球14个信息学奥林匹克赛事的72场官方比赛,共403道专家筛选的题目。
    • 测试用例:每道题平均配备60个专家设计的测试用例,含私有测试用例,降低假阳性率。
    • 评估体系:支持离线评估,无需依赖外部API,同时提供细粒度评分标准(如子任务评分)和人类参赛者排名数据,便于模型与人类顶尖选手直接对比。
  3. 模型测试结果
    • 闭源模型表现:GPT-5表现最佳,达到人类第81.76百分位,但仍低于人类顶尖选手(通常在90百分位以上);Gemini-2.5-Pro紧随其后,处于71.80百分位。
    • 开源模型表现:GPT-OSS-120B为开源模型中最优,达60百分
### Whisper Large V3 Model Information and Usage Whisper models, developed by OpenAI, represent a series of speech recognition systems designed to transcribe audio into text accurately. The architecture behind these models allows them to understand various languages and accents effectively[^3]. However, specific details about the "Whisper Large V3" version are not directly mentioned within provided references. For general understanding on how such advanced versions might differ from previous ones like Whisper Large V2 or original releases: - **Enhanced Accuracy**: Later iterations typically include improvements in transcription accuracy across different dialects and noisy environments. - **Increased Efficiency**: Optimizations may have been applied to reduce computational requirements while maintaining performance levels. - **Broader Language Support**: Expanding support for more languages is common as developers refine algorithms over time. To utilize any variant of the Whisper model including what could be termed as 'Large V3', one would generally follow similar procedures outlined for earlier versions unless official documentation specifies otherwise. This involves using APIs or command-line tools that interact with pre-trained weights stored remotely or locally depending upon deployment strategy chosen by users. ```python import whisper model = whisper.load_model("large-v3") # Hypothetical placeholder name; actual naming conventions should refer to latest release notes audio_file_path = "./example_audio.wav" result = model.transcribe(audio_file_path) print(result["text"]) ``` --related questions-- 1. What new features does the most recent iteration of Whisper introduce compared to its predecessors? 2. How can developers integrate Whisper's API efficiently into existing applications without significant overhead? 3. Are there benchmarks comparing the performance metrics between different variants of Whisper models? 4. In which scenarios do specialized speech-to-text solutions outperform generalized models like those in the Whisper family?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值