How Effectively Can Large Language Models Connect SNP Variants and ECG Phenotypes for Cardiovascular

文章总结与翻译

一、文章主要内容

本文聚焦于利用大型语言模型(LLMs)连接单核苷酸多态性(SNP)变异与心电图(ECG)表型,以实现心血管疾病(CVD)风险预测,核心内容可分为以下几部分:

1. 研究背景与问题

心血管疾病是全球首要死因,2023年约2050万人死于该病。尽管全基因组关联研究(GWAS)已发现诸多与心血管疾病相关的SNP,但SNP与心电生理表现(如ECG特征)间的机制联系仍不明确。传统统计模型(如GWAS、多基因风险评分)难以捕捉基因组中的非线性关系和上位性相互作用,而整合基因组数据与动态表型生物标志物(如ECG特征)的研究较为稀缺,亟需可解释、可扩展的心血管基因组模型。

2. 研究方法

  • 数据整合与分层:构建统一的心血管基因组数据集,整合高分辨率SNP基因分型数据与ECG提取的形态学、时间特征,并将8856名参与者按标签可用性分为三层——Tier 1(有明确心脏诊断)、Tier 2(有间接心脏风险指标,如高血压)、Tier 3(无标签或无已知心脏诊断)。
  • 特征工程:Tier 1基于GWAS筛选高置信度SNP;Tier 2采用TF-IDF表示SNP谱以突出罕见或队列特异性变异;Tier 3通过无监督聚类挖掘潜在基因型-表型分组,推断风险水平。
  • 模型训练:采用思维链(CoT)提示构建,整合ECG特征、SNP变异、诊断标签等信息;使用低秩适应(LoRA)对GPT-2、
### Isomorphic Pruning Technique in Vision Models Explained Isomorphic pruning is a method that aims to reduce the computational complexity of deep neural networks while preserving their performance by selectively removing redundant or less important parameters from models. This process ensures that the pruned network retains an architecture similar (isomorphic) to its original form but operates more efficiently. In vision models specifically, this technique can be applied through several strategies: #### Criteria for Selecting Parameters to Remove The selection criteria often involve evaluating parameter importance based on metrics such as magnitude, gradient flow, or contribution towards specific tasks like classification accuracy[^1]. By identifying those weights which have minimal impact when removed, one can effectively trim down layers without significantly affecting overall functionality. #### Maintaining Architectural Integrity Post-Pruning To maintain architectural integrity post-pruning, methods may include maintaining certain structural properties during removal processes—such as ensuring connectivity patterns within convolutional filters remain intact after thinning operations are performed upon them[^2]. #### Re-training After Pruning After applying these techniques, it's common practice to fine-tune or retrain the model so any slight loss due to weight elimination gets compensated over time via optimization algorithms adjusting remaining connections accordingly[^3]. ```python def prune_network(model, criterion='magnitude', threshold=0.01): """ Applies isomorphic pruning on a given PyTorch model. Args: model (torch.nn.Module): The target neural network module. criterion (str): Criterion used for selecting parameters ('magnitude'). threshold (float): Threshold value below which parameters will be pruned. Returns: torch.nn.Module: A pruned version of input `model`. """ import copy pruned_model = copy.deepcopy(model) for name, param in pruned_model.named_parameters(): if 'weight' in name: mask = abs(param.data) >= threshold # Apply masking according to selected criterion if criterion == "magnitude": masked_param = param.data * mask.float() setattr(pruned_model, name.split('.')[0], type(getattr(pruned_model,name.split('.')[0]))(masked_param)) return pruned_model ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值