Planning In Natural Language Improves LLM Search For Code Generation

本文是LLM系列文章,针对《Planning In Natural Language Improves LLM Search For Code Generation》的翻译。

用自然语言进行规划改进了LLM搜索代码生成

摘要

虽然扩展训练计算已经导致大型语言模型 (LLM) 的显着改进,但扩展推理计算尚未产生类似的收益。我们假设核心缺失部分是缺乏多样化的 LLM 输出,由于模型重复采样高度相似但不正确的生成,导致搜索效率低下。我们凭经验证明,可以通过搜索用自然语言解决问题的候选计划来缓解这种多样性的缺乏。基于这一见解,我们提出了 PLANSEARCH,这是一种新颖的搜索算法,它在 HumanEval+、MBPP+ 和 LiveCodeBench(竞争性编码的无污染基准)上显示出强大的结果。 PLANSEARCH 生成关于问题的一组不同的观察结果,然后使用这些观察结果来构建解决问题的计划。通过使用自然语言搜索计划而不是直接搜索代码解决方案,与基线搜索方法相比,PLANSEARCH 探索了更加多样化的潜在解决方案。在 Claude 3.5 Sonnet 之上使用 PLANSEARCH 在 LiveCodeBench 上实现了 77.0% 的最先进的 pass@200,优于没有搜索时获得的最佳分数 (pass@1 = 41.4%) 和使用标准重复采样 (pass@ 200 = 60.6%)。最后,我们表明,在所有分析的模型、搜索算法和基准测试中,我们可以准确预测搜索带来的性能增益,作为生成想法的多样性的直接函数。

1 引言

2 相关工作

3 动机

### Elasticsearch Retrieval-Augmented Generation Implementation and Best Practices #### Understanding the Integration of Elasticsearch with RAG Elasticsearch serves as a powerful tool within the context of implementing retrieval-augmented generation (RAG). The integration leverages Elasticsearch's capabilities in handling large volumes of data efficiently while providing fast query responses. This setup enhances the performance of language models when generating text based on retrieved information from vast datasets. For instance, one can refer to practical examples provided through GitHub repositories such as `langchain-elasticsearch-RAG`[^1], showcasing how these technologies work together seamlessly for specific applications like document summarization or question answering systems. #### Data Indexing Strategy In designing an effective RAG system utilizing Elasticsearch, careful consideration must be given to how data gets indexed. An index structure similar to that found in traditional relational databases plays a crucial role here—each record corresponds to entries within this schema-specific container[^3]. When dealing with dynamic content streams or log analysis scenarios, daily indices might prove beneficial due to their ability to manage time-series data effectively without compromising search efficiency across multiple periods simultaneously. #### Text Segmentation Techniques To optimize interactions between Elasticsearch and LLMs during the preprocessing phase before feeding into any generative model, appropriate segmentation strategies become essential. Two primary aspects influence decision-making regarding splitting documents: - **Token Limitation**: Adhering strictly to embedding models' token constraints ensures compatibility. - **Semantic Integrity**: Maintaining coherent meaning units improves overall retrieval quality significantly[^4]. Common approaches include sentence-based partitioning, paragraph-level divisions, or even custom logic tailored specifically towards domain-specific requirements ensuring both conditions above remain satisfied adequately throughout processing stages leading up until final output generation via chosen neural architectures employed post-retrieval steps. #### Code Example Demonstrating Basic Setup Below demonstrates setting up basic components necessary for integrating Elasticsearch alongside Python-based NLP pipelines supporting RAG workflows: ```python from elasticsearch import Elasticsearch import langchain.elasticsearch_rag as rag es_client = Elasticsearch() def initialize_index(): es_client.indices.create( index="product_catalog", body={ "settings": { "number_of_shards": 1, "analysis": { "analyzer": {"default": {"type": "standard"}} } }, "mappings": { "properties": { "title": {"type": "text"}, "description": {"type": "text"} } } }, ignore=400) initialize_index() ``` This snippet initializes an Elasticsearch cluster configured appropriately for storing structured metadata about products intended later use within downstream tasks involving natural language understanding processes powered by advanced machine learning techniques implemented over RESTful APIs exposed externally through web services architecture patterns common today among cloud-native deployments targeting scalable solutions capable enough meeting modern enterprise demands around big data analytics platforms built atop distributed computing frameworks optimized toward real-time insights extraction directly out-of-the-box without requiring extensive customization efforts upfront investment costs associated traditionally seen elsewhere inside IT departments managing legacy infrastructure environments not designed originally keeping current trends mind at all times moving forward strategically speaking. --related questions-- 1. How does Elasticsearch handle high-frequency updates in indexes used for RAG? 2. What are some best practices for optimizing queries in Elasticsearch for better RAG performance? 3. Can you provide more details on configuring Elasticsearch settings for optimal text retrieval? 4. Are there alternative methods besides daily indexing for improving temporal data management in Elasticsearch? 5. Which factors should be considered when choosing between different text segmentation algorithms for preparing input for RAG?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值