Chain-of-Thought Reasoning without Prompting

研究发现,大型语言模型(LLM)无需手动提示就能进行链式思维(CoT)推理。通过改变解码过程,尤其是使用顶部-� 替代token,LLM自然产生CoT路径,这与更高的解码答案置信度相关。CoT解码方法在多个推理基准上提高了LLM的性能,但增加了计算成本。未来工作可能涉及微调模型和在解码阶段寻找最佳路径。

本文是LLM系列文章,针对《Chain-of-Thought Reasoning without Prompting》的翻译。

摘要

在增强大型语言模型(LLM)的推理能力方面,先前的研究主要集中在特定的提示技术上,如小样本或零样本思想链(CoT)提示。这些方法虽然有效,但通常涉及手动密集的提示工程。我们的研究采用了一种新颖的方法,提出了一个问题:LLM能在没有提示的情况下有效推理吗?我们的研究结果表明,有趣的是,通过简单地改变解码过程,可以从预训练的LLM中引出CoT推理路径。与传统的贪婪解码不同,我们研究了顶部-𝑘 替代token,揭示了CoT路径经常是这些序列中固有的。这种方法不仅绕过了提示的混杂因素,而且使我们能够评估LLM的内在推理能力。此外,我们观察到解码路径中CoT的存在与模型的解码答案的更高置信度相关。该置信度度量有效地区分了CoT路径和非CoT路径。对各种推理基准的广泛实证研究表明,所提出的CoT解码有效地从语言模型中激发了推理能力,而这些能力以前被标准的贪婪解码所掩盖。

1 引言

2 COT解码

3 实验

4 相关工作

5 结论和讨论

我们研究了语言模型在解码过程中生成CoT推理路径的固有能力,不需要任何专门的提示。我们的研究结果表明,与只使用贪婪解码的普遍做法相反,探索替代顶端-𝑘 解码空间中的token揭示了这些模型中推理路径的自然存在。此外,我们的经验观察结果强调,CoT推理路径的存在与解码其最终答案时模型置信度的增加相关。基于这一观察,我们引入了CoT解码,以从语言模型中提取更可靠的解码路径,从而提高

### Prompt Optimizer Tools and Techniques in AI or NLP Prompt optimization plays a critical role in enhancing the performance of large language models (LLMs) and natural language processing (NLP) systems. Below are some key methods and tools used for prompt optimization: #### 1. **Few-Shot Learning** In few-shot learning, the model is provided with a small number of examples within the prompt itself to guide its behavior[^1]. This approach leverages the inherent capabilities of pre-trained models to generalize from limited data. #### 2. **Chain-of-Thought Reasoning** This technique involves breaking down complex tasks into simpler subtasks that the model can reason about step-by-step[^3]. By structuring prompts to encourage sequential reasoning, better results can be achieved even without extensive retraining. #### 3. **Instruction Tuning** Instruction tuning focuses on adapting models to follow specific instructions more effectively through fine-tuning on datasets containing diverse instruction-following examples[^5]. For instance, Chinese-Alpaca-Plus-13B was developed using this method, where LLaMA-13B was fine-tuned on conversationally rich datasets generated by ChatGPT. #### 4. **Reinforcement Learning from Human Feedback (RLHF)** RLHF combines reinforcement learning with human feedback to optimize model outputs according to desired criteria[^4]. Algorithms like Proximal Policy Optimization (PPO) have been successfully applied here, allowing models to learn optimal behaviors based on both environmental rewards and direct human input. #### 5. **Automated Prompt Engineering** Several automated approaches exist for generating effective prompts programmatically. These include evolutionary algorithms, genetic programming, and Bayesian optimization techniques designed specifically for hyperparameter search spaces related to prompting strategies[^2]. ```python import random def generate_random_prompt(template="Answer the following question: {question}", placeholders={"{question}": ["What is your name?", "How old are you?"]}): """Generates a randomized version of the given template.""" filled_placeholder = {key: random.choice(values) for key, values in placeholders.items()} return template.format(**filled_placeholder) print(generate_random_prompt()) ``` The above Python snippet demonstrates how one might implement basic automation for creating varied instances of predefined templates suitable for experimentation purposes during development phases involving different types of queries. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值