Security and Privacy Challenges of Large Language Models: A Survey

本文详述大型语言模型(LLM)在安全和隐私方面的挑战,包括越狱攻击、数据中毒和个人信息泄露。调查涵盖LLM的架构、安全攻击、隐私攻击及防御机制,指出现有工作局限并提出未来研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Security and Privacy Challenges of Large Language Models: A Survey》的翻译。

摘要

大型语言模型(LLM)已经展现出非凡的能力,并在多个领域做出了贡献,如生成和总结文本、语言翻译和问答。如今,LLM正成为计算机语言处理任务中非常流行的工具,能够分析复杂的语言模式,并根据上下文提供相关和适当的回应。这些模型在提供显著优势的同时,也容易受到安全和隐私攻击,如越狱攻击、数据中毒攻击和个人身份信息(PII)泄露攻击。这项调查全面审查了LLM对训练数据和用户的安全和隐私挑战,以及交通、教育和医疗保健等各个领域中基于应用程序的风险。我们评估LLM漏洞的程度,调查LLM新出现的安全和隐私攻击,并审查潜在的防御机制。此外,该调查概述了该领域现有的研究空白,并强调了未来的研究方向。

1 引言

2 LLM架构

3 LLM漏洞概述

4 LLM的安全攻击

5 LLM的隐私攻击

6 防御机制

7 LLM中基于应用程序的风险

8 现有工作的局限性和未来的研究方向

9 结论

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值