Large Language Models in Law: A Survey

828 篇文章

已下架不支持订阅

本文探讨了大语言模型(LLM)在法律领域的应用,包括为用户提供法律咨询、协助法官审判,同时也指出LLM面临的挑战,如长文本处理、适应性和数据隐私。文章提出了未来的发展方向,强调数据质量、模型智能与伦理监管的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Large Language Models in Law: A Survey》的翻译。

摘要

人工智能的出现对传统司法行业产生了重大影响。此外,最近,随着人工智能生成内容(AIGC)的发展,人工智能和法律在各个领域都有应用,包括图像识别、自动文本生成和交互式聊天。随着大模型的迅速出现和日益普及,人工智能显然将推动传统司法行业的转型。然而,法律大语言模型的应用仍处于初级阶段。需要解决几个挑战。在本文中,我们旨在提供一个全面的调查法律LLM。我们不仅对LLM进行了广泛的调查,还揭示了它们在司法系统中的应用。我们首先概述了法律领域的人工智能技术,并展示了LLM的最新研究。然后,我们讨论了法律LLM提出的实际实施,例如为用户提供法律咨询和在审判期间协助法官。此外,我们还探讨了法律LLM的局限性,包括数据、算法和司法实践。最后,我们总结了切实可行的建议,并提出了应对这些挑战的未来发展方向。

1 引言

2 LLM的关键技术

3 司法技术的演变

4 最近的应用

5 挑战

6 未来

### Chain-of-Thought Prompting Mechanism in Large Language Models In large language models, chain-of-thought prompting serves as a method to enhance reasoning capabilities by guiding the model through structured thought processes. This approach involves breaking down complex problems into simpler components and providing step-by-step guidance that mirrors human cognitive processing. The creation of these prompts typically includes selecting examples from training datasets where each example represents part of an overall problem-solving process[^2]. By decomposing tasks into multiple steps, this technique encourages deeper understanding and more accurate predictions compared to traditional methods. For instance, when faced with multi-hop question answering or logical deduction challenges, using such chains allows models not only to generate correct answers but also articulate intermediate thoughts leading up to those conclusions. Such transparency facilitates better interpretability while improving performance on various NLP benchmarks. ```python def create_chain_of_thought_prompt(task_description, examples): """ Creates a chain-of-thought prompt based on given task description and examples. Args: task_description (str): Description of the task at hand. examples (list): List containing tuples of input-output pairs used for demonstration purposes. Returns: str: Formatted string representing the final prompt including both instructions and sample cases. """ formatted_examples = "\n".join([f"Input: {ex[0]}, Output: {ex[1]}" for ex in examples]) return f""" Task: {task_description} Examples: {formatted_examples} Now try solving similar questions following above pattern. """ # Example usage examples = [ ("What color do you get mixing red and blue?", "Purple"), ("If it rains tomorrow, will we have our picnic?", "No") ] print(create_chain_of_thought_prompt("Solve logic puzzles", examples)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值