Context Tuning for Retrieval Augmented Generation

828 篇文章

已下架不支持订阅

本文介绍了一种名为上下文调优的方法,旨在改进检索增强生成(RAG)在处理不完整查询时的性能。通过引入轻量级的上下文检索模型,利用数字、分类和习惯用法信号,该方法能更有效地检索和排序上下文信息,从而提高RAG的工具检索和计划生成的准确性。实验证明,上下文调优能显著增强语义搜索,减少幻觉,并且在某些情况下优于基于GPT-4的检索系统。然而,当前工作仍存在局限,如未考虑会话历史,这限制了模型处理复杂任务和话题转变的能力。

本文是LLM系列文章,针对《Context Tuning for Retrieval Augmented Generation》的翻译。

用于检索增强生成的上下文调整

摘要

大型语言模型(LLM)具有通过几个例子解决新任务的非凡能力,但它们需要访问正确的工具。检索增强生成(RAG)通过检索给定任务的相关工具列表来解决这个问题。然而,RAG的工具检索步骤要求所有必需的信息都明确地出现在查询中。这是一个限制,因为广泛采用的工具检索方法语义搜索在查询不完整或缺乏上下文时可能会失败。为了解决这一限制,我们提出了RAG的上下文调整,它使用智能上下文检索系统来获取相关信息,从而改进工具检索和计划生成。我们的轻量级上下文检索模型使用数字、分类和习惯用法信号来检索和排序上下文项目。我们的实证结果表明,上下文调整显著增强了语义搜索,在recall@k分别用于上下文检索和工具检索任务,并使基于LLM的计划器准确性提高11.6%。此外,我们还表明,我们提出的使用LambdaMART的倒数秩融合(RRF)的轻量级模型优于基于GPT-4的检索。此外,我们观察到,即使在工具检索之后,在计划生成时上下文增强也会减少幻觉。

1 引言

2 相关工作

3 方法

4 结果

5 结论

我们的工作引入了上下文调优,这是一种新的组件,通过为其配备基本的上下文搜索功能来解决不完整或指定不足的查询,从而增强基于RAG的规划。通过对应用于轻量级模型和LLM的各种检索方法的系统比较,我们展示了上下文调整在提高上下文理解方面的有效性。我们的经验观察表明,当不应用微调时,CoT增强增强了上下文检索,而微调检索模型则消除了CoT增强的

已下架不支持订阅

### Retrieval-Augmented Generation in Knowledge-Intensive NLP Tasks Implementation and Best Practices The method of retrieval-augmented generation (RAG) for knowledge-intensive natural language processing tasks aims to combine the strengths of dense vector representations with sparse exact match methods, thereby improving model performance on tasks that require access to external information not present during training[^1]. This approach ensures models can retrieve relevant documents or passages from a large corpus at inference time and generate responses conditioned on this retrieved context. #### Key Components of RAG Framework A typical implementation involves two main components: 1. **Retriever**: A component responsible for fetching potentially useful pieces of text based on input queries. 2. **Generator**: An encoder-decoder architecture like BART or T5 which generates outputs given both the query and retrieved contexts as inputs. This dual-stage process allows systems to leverage vast amounts of unstructured data without needing explicit retraining when new facts become available. #### Practical Steps for Implementing RAG Models To effectively implement such an architecture, one should consider several factors including but not limited to choosing appropriate pre-trained retrievers and generators fine-tuned specifically towards question answering or similar objectives where factual accuracy is paramount. Additionally, integrating these modules into existing pipelines requires careful consideration regarding latency constraints versus quality trade-offs especially under real-time applications scenarios. For instance, here's how you might set up a simple pipeline using Hugging Face Transformers library: ```python from transformers import RagTokenizer, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq") def rag_pipeline(question): inputs = tokenizer([question], return_tensors="pt", truncation=True) generated_ids = model.generate(input_ids=inputs["input_ids"]) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return output ``` In practice, tuning hyperparameters associated with each stage separately could lead to better overall results compared to treating them monolithically due to their distinct roles within the system design. #### Best Practices When Working With RAG Systems When deploying RAG-based solutions, adhering to certain guidelines helps maximize effectiveness while minimizing potential pitfalls: - Ensure high-quality indexing over document collections used by the retriever part since poor recall directly impacts downstream generations negatively. - Regularly update underlying corpora so they remain current; stale resources may propagate outdated information through synthetic texts produced thereafter. - Monitor closely any changes made either upstream (e.g., modifications affecting source material accessibility) or inside your own infrastructure because alterations elsewhere often necessitate corresponding adjustments locally too. By following these recommendations alongside leveraging state-of-the-art techniques provided via frameworks like those mentioned earlier, developers stand well positioned to build robust conversational agents capable of delivering accurate answers across diverse domains requiring specialized domain expertise beyond what general-purpose pretrained models alone offer today. --related questions-- 1. How does multi-task learning compare against single-task approaches concerning adaptability? 2. What are some challenges faced when implementing keyword-based point cloud completion algorithms? 3. Can prompt engineering significantly influence outcomes in few-shot learning settings? 4. Are there specific industries benefiting most prominently from advancements in knowledge-intensive NLP technologies?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值