KNOWLEDGE SOLVER: TEACHING LLMS TO SEARCH FOR DOMAIN KNOWLEDGE FROM KNOWLEDGE GRAPHS

828 篇文章

已下架不支持订阅

本文介绍了一种名为知识求解器(KSL)的方法,它教导大型语言模型(LLM)如何从知识图谱中搜索特定领域的知识,以增强其推理能力。KSL通过将检索转化为多跳决策序列,使LLM能够零样本搜索知识,提高可解释性,并在多个数据集上提升了LLM的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《KNOWLEDGE SOLVER: TEACHING LLMS TO SEARCH FOR DOMAIN KNOWLEDGE FROM KNOWLEDGE GRAPHS》的翻译。

知识求解器:教LLMS从知识图谱中搜索领域知识

摘要

大型语言模型(LLM),如ChatGPT和GPT-4,由于其涌现能力和可推广性,是通用的,可以解决不同的任务。然而,LLM有时缺乏特定领域的知识来执行任务,这也会在推理过程中引起幻觉。在之前的一些工作中,图神经网络(GNN)等附加模块是根据从外部知识库中检索到的知识进行训练的,旨在缓解缺乏特定领域知识的问题。然而,合并额外的模块:1)当遇到新的领域时,需要重新训练额外的模块;2) 将成为一个瓶颈,因为LLM的强大能力没有完全用于检索。在本文中,我们提出了一种称为知识求解器(KSL)的范式,教LLM通过利用自身强大的可推广性,从外部知识库中搜索基本知识。具体来说,我们设计了一个简单而有效的提示,将检索转换为多跳决策序列,使LLM能够以零样本的方式搜索知识。此外,KSL能够提供完整的检索路径,从而提高LLM推理过程的可解释性。我们在三个数据集上进行了实验:CommonsenseQA、OpenbookQA和MedQA USMLEÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值