DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature

828 篇文章

已下架不支持订阅

DetectGPT是一种零样本机器生成文本检测方法,通过分析大型语言模型的对数概率函数的负曲率区域来判断文本是否由模型生成。无需额外训练,DetectGPT在检测GPT-NeoX生成的假新闻时表现出高鉴别力,AUROC从0.81提升到0.95。该方法依赖于模型计算的对数概率和随机扰动,但受限于白盒假设和计算密集度。未来研究可能探索与水印算法的结合以及在其他生成模型中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature》的翻译。

摘要

大型语言模型(LLM)的日益流畅和广泛使用突出了相应工具的可取性,这些工具有助于检测LLM生成的文本。在本文中,我们确定了LLM概率函数结构的一个性质,该性质对这种检测有用。具体来说,我们证明了从LLM中采样的文本往往占据模型对数概率函数的负曲率区域。利用这一观察结果,我们定义了一个新的基于曲率的标准,用于判断通道是否由给定的LLM生成。这种方法,我们称之为DetectGPT,不需要训练单独的分类器,不需要收集真实或生成的段落的数据集,也不需要显式地为生成的文本添加水印。它只使用由感兴趣的模型计算的对数概率和来自另一个通用的预先训练的语言模型(例如T5)的文章的随机扰动。我们发现,对于模型样本检测,DetectGPT比现有的零样本方法更具鉴别力,显著地将由20B参数GPT-NeoX生成的假新闻文章的检测从最强零样本基线的0.81 AUROC提高到DetectGPT的0.95 AUROC。有关代码、数据和其他项目信息,请参阅ericmitchell.ai/detectgpt。

1 引言

2 相关工作<

已下架不支持订阅

### Zero-Shot Learning Chain in Machine Learning and NLP Applications Zero-shot learning (ZSL) refers to the ability of a model to make accurate predictions about previously unseen classes or data points without any explicit training on these specific instances. In the context of natural language processing (NLP), zero-shot capabilities allow models to understand and generate responses for tasks they have not been specifically trained on, leveraging pre-existing knowledge from related domains. #### Conceptual Overview In traditional supervised learning scenarios, models require labeled datasets corresponding directly to each task at hand. However, with zero-shot approaches, especially within chains or sequences of operations, models can generalize across different types of inputs by relying on abstract reasoning skills learned during initial training phases[^1]. This characteristic is particularly valuable when dealing with rapidly evolving application areas where new categories emerge frequently but obtaining sufficient annotated samples might be challenging. For instance, consider an intelligent assistant that needs to respond appropriately even if it encounters novel user queries outside its original dataset; this would involve chaining together multiple components such as intent recognition, entity extraction, dialogue management—all operating under a unified framework capable of handling unknown elements effectively. #### Practical Implementation Example To demonstrate how one could implement a zero-shot chain using modern large language models like those mentioned earlier which tend towards being closed-source[^3], here’s a simplified Python code snippet demonstrating interaction between two hypothetical modules: ```python from langchain import LangChainModel # Hypothetical API-based access point def perform_zero_shot_task(input_text): """ Demonstrates performing a zero-shot operation utilizing chained services. Args: input_text (str): Input string provided by end-user requiring analysis. Returns: dict: Dictionary containing results after passing through various stages. """ # Initialize service clients based on available APIs classifier_client = LangChainModel(api_key="your_api_key", endpoint="/classify") generator_client = LangChainModel(api_key="your_api_key", endpoint="/generate") classification_result = classifier_client.predict(text=input_text) generated_response = generator_client.generate(prompt=classification_result['label']) return { "input": input_text, "predicted_class": classification_result["label"], "response": generated_response } ``` This example shows how easily adaptable systems built around composability principles can handle diverse requests while maintaining flexibility regarding underlying technologies used—whether open source or proprietary solutions accessed via web interfaces. --related questions-- 1. How does prompt engineering influence performance in zero-shot settings? 2. What are some common challenges faced when implementing real-world applications involving zero-shot learning chains? 3. Can you provide examples of industries benefiting most significantly from adopting zero-shot methodologies? 4. Are there particular architectural designs better suited than others for supporting efficient implementation of zero-shot workflows?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值