本文是LLM系列的文章之一,主要是讲解多模态的LLM。针对《A Survey on Multimodal Large Language Models》的翻译。
多模态大语言模型的综述
摘要
多模态大语言模型(MLLM)是近年来兴起的一个新的研究热点,它利用强大的大语言模型作为大脑来执行多模态任务。MLLM令人惊讶的新兴能力,如基于图像写故事和无OCR的数学推理,在传统方法中是罕见的,这表明了一条通往人工通用智能的潜在道路。在本文中,我们旨在追踪和总结MLLM的最新进展。首先,我们提出了MLLM的公式,并阐述了其相关概念。然后,我们讨论了关键技术和应用,包括多模式指令调整(M-IT)、多模式上下文学习(M-ICL)、多模态思想链(M-CoT)和LLM辅助视觉推理(LAVR)。最后,我们讨论了现有的挑战,并指出了有希望的研究方向。鉴于MLLM时代才刚刚开始,我们将不断更新这项调查,并希望它能启发更多的研究。收集最新论文的相关GitHub链接可在https://github.com/BradyFU/AwesomeMultimodal-Large-Language-Models.