1.普里姆算法应用场景:
修路问题:
7个村庄(A,B,C,D,E,F,G),现在需要修路把7个村庄连通,各个村庄的距离用边线表示(权),比如A-B距离5公里,问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
2.最小生成树:
最小生成树(Minimum Cost Spanning Tree),简称MST,给定一个带权的左向连接通图,如何选取一颗生成树,使树上所有边上权的总和为最小,这叫最小生成树,N个顶点,一定有N-1条边,包含全部顶点,N-1条边都在图中,如下图
最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法。
3. 普里姆算法介绍:
普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图。
普里姆算法如下:
(1)设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
(2)若从顶点u开始构造最小生成树,则从集合v中取出顶点u放入集合U中,标记顶点v的visited[u] = 1
(3)若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,单不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
(4)重复步骤2,知道U,V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
4.代码实现:
package algorithm.prim;
/**
* @author WuChenGuang
*/
public class MGraph {
int verses;
char[] data;
int[][] weight;
public MGraph(int verses) {
this.verses = verses;
data = new char[verses];
weight = new int[verses][verses];
}
}
package algorithm.prim;
import java.util.Arrays;
/**
* @author WuChenGuang
*/
public class MinTree {
public void createGraph(MGraph graph, int verses, char[] data, int[][] weight) {
for (int i = 0; i < verses; i++) {
graph.data[i] = data[i];
System.arraycopy(weight[i], 0, graph.weight[i], 0, verses);
}
}
/**
* 查看邻接矩阵
*/
public void showGraph(MGraph graph) {
for (int[] data : graph.weight) {
System.out.println(Arrays.toString(data));
}
}
public void prim(MGraph graph, int v) {
// 标记被访问过的,0表示没有访问过,1表示访问过
int[] visited = new int[graph.verses];
visited[v] = 1;
int x = -1;
int y = -1;
int minWeight = 10000;
// 最小生成树 边 = 顶点-1
for (int i = 1; i < graph.verses; i++) {
// 被访问过
for (int j = 0; j < graph.verses; j++) {
// 没有被访问过
for (int k = 0; k < graph.verses; k++) {
if (visited[j] == 1 && visited[k] == 0 && graph.weight[j][k] < minWeight) {
minWeight = graph.weight[j][k];
x = j;
y = k;
}
}
}
System.out.println(graph.data[x] + "----->" + graph.data[y] + "=" + minWeight);
visited[y] = 1;
minWeight = 10000;
}
}
}
package algorithm.prim;
/**
* @author WuChenGuang
*/
public class PrimAlgorithm {
public static void main(String[] args) {
char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int verses = data.length;
int[][] weight = {
{10000, 5, 7, 10000, 10000, 10000, 2},
{5, 10000, 10000, 9, 10000, 10000, 3},
{7, 10000, 10000, 10000, 8, 10000, 10000},
{10000, 9, 10000, 10000, 10000, 4, 10000},
{10000, 10000, 8, 10000, 10000, 5, 4},
{10000, 10000, 10000, 4, 5, 10000, 6},
{2, 3, 10000, 10000, 4, 6, 10000},
};
MGraph mGraph = new MGraph(verses);
MinTree minTree = new MinTree();
minTree.createGraph(mGraph, verses, data, weight);
minTree.showGraph(mGraph);
minTree.prim(mGraph, 0);
}
}
运行结果: