UVa 208 Firetruck


 Firetruck 

The Center City fire department collaborates with the transportation department to maintain maps of the city which reflects the current status of the city streets. On any given day, several streets are closed for repairs or construction. Firefighters need to be able to select routes from the firestations to fires that do not use closed streets.

Central City is divided into non-overlapping fire districts, each containing a single firestation. When a fire is reported, a central dispatcher alerts the firestation of the district where the fire is located and gives a list of possible routes from the firestation to the fire. You must write a program that the central dispatcher can use to generate routes from the district firestations to the fires.

Input

The city has a separate map for each fire district. Streetcorners of each map are identified by positive integers less than 21, with the firestation always on corner #1. The input file contains several test cases representing different fires in different districts.

  • The first line of a test case consists of a single integer which is the number of the streetcorner closest to the fire.
  • The next several lines consist of pairs of positive integers separated by blanks which are the adjacent streetcorners of open streets. (For example, if the pair 4 7 is on a line in the file, then the street between streetcorners 4 and 7 is open. There are no other streetcorners between 4 and 7 on that section of the street.)
  • The final line of each test case consists of a pair of 0's.

Output

For each test case, your output must identify the case by number (CASE #1CASE #2, etc). It must list each route on a separate line, with the streetcorners written in the order in which they appear on the route. And it must give the total number routes from firestation to the fire. Include only routes which do not pass through any streetcorner more than once. (For obvious reasons, the fire department doesn't want its trucks driving around in circles.)

Output from separate cases must appear on separate lines.

The following sample input and corresponding correct output represents two test cases.

Sample Input

6
1 2
1 3
3 4
3 5
4 6
5 6
2 3
2 4
0 0
4
2 3
3 4
5 1
1 6
7 8
8 9
2 5
5 7
3 1
1 8
4 6
6 9
0 0

Sample Output

CASE 1:
1 2 3 4 6
1 2 3 5 6
1 2 4 3 5 6
1 2 4 6
1 3 2 4 6
1 3 4 6
1 3 5 6
There are 7 routes from the firestation to streetcorner 6.
CASE 2:
1 3 2 5 7 8 9 6 4
1 3 4
1 5 2 3 4
1 5 7 8 9 6 4
1 6 4
1 6 9 8 7 5 2 3 4
1 8 7 5 2 3 4
1 8 9 6 4
There are 8 routes from the firestation to streetcorner 4.

#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
// visit[i] = 1 代表该节点被访问过
// visit[i] = 0 代表该节点未被访问过
int visit[25];

// next[i]代表和i街区相连的街区
vector<int> next[25];

// 代表此次路径
int path[25];

// 此次路径长度
int path_length;

// 总共路径个数
int path_count;

// 终点路径街区
int target;

// 街区总数
int street_count;

void dfs_search(int x);

int main()
{
	int g_count = 1;
	while(scanf("%d", &target) == 1)
	{
		// 读入各个街区情况
		memset(visit, 0, sizeof(visit));
		path_count = 0;
		street_count = 0;
		for(int i = 0; i < 25; i++)
			next[i] = vector<int>();

		int x, y;
		while(scanf("%d %d", &x, &y) == 2 && !(x == 0 && y == 0))
		{
			next[x].push_back(y);
			next[y].push_back(x);
			if(x > street_count)
				street_count = x;
			if(y > street_count)
				street_count = y;
		}		

		for(int i = 0; i < street_count; i++)
			sort(next[i].begin(), next[i].end());
		
		// 宽度优先搜索
		queue<int> my_queue;
		visit[1] = 1;
		my_queue.push(1);
		int find_flag = 0;
		while(my_queue.size() > 0)
		{
			int x = my_queue.front();
			my_queue.pop();
			if(x == target)
			{
				find_flag = 1;
				break;
			}
			for(int i = 0; i < next[x].size(); i++)
			{
				if(visit[next[x][i]] == 0)
				{
					my_queue.push(next[x][i]);
					visit[next[x][i]] = 1;
				}
			}
		}	
		if(find_flag == 0)
		{
			printf("CASE %d:\n", g_count);
			printf("There are 0 routes from the firestation to streetcorner %d.\n", target);
			g_count++;
			continue;
		}
		memset(visit, 0, sizeof(visit));	
		// 深度优先搜索来遍历出所有路径
		path[0] = 1;
		visit[1] = 1;
		path_length = 1;
		printf("CASE %d:\n", g_count);
		dfs_search(1);
		printf("There are %d routes from the firestation to streetcorner %d.\n", path_count, target);	
		g_count++;
	}	
	return 0;	
}

// 深度优先搜索来遍历出所有路径
// x为当前所访问的节点
void dfs_search(int x)
{
	// 如果遍历到终点节点,打印路径
	if(x == target)
	{
		for(int i = 0; i < path_length; i++)
		{
			if(i == 0)
				printf("%d", path[i]);
			else
				printf(" %d", path[i]);
		}	
		printf("\n");	
		path_count++;
		return;
	}	

	// 否则检查该节点的所有相连节点,可能的话进行遍历
	for(int i = 0; i < next[x].size(); i++)
	{
		if(visit[next[x][i]] == 0)
		{
			visit[next[x][i]] = 1;
			path[path_length] = next[x][i];
			path_length++;
			dfs_search(next[x][i]);
			path_length--;
			visit[next[x][i]] = 0;	
		}	
	}		
		
}

一开始写了个DFS,然后超时了。
感觉这个题目有点坑,不过也提供了一个思路。
如果起始点到终止点之间不连通,就不需要DFS来寻找路径了。
首先从起始点BFS判断是否能到达终止点,如果可以,再用DFS寻找所有路径。
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值