In a country, there are a number of cities. Each pair of city is connected by a highway, bi-directional of course. A road-inspector’s task is to travel through the highways (in either direction) and to check if everything is in order. Now, a road-inspector has a list of highways he must inspect. However, it might not be possible for him to travel through all the highways on his list without using other highways. He needs a constant amount of time to traverse any single highway. As you can understand, the inspector is a busy fellow does not want to waste his precious time. He needs to know the minimum possible time to complete his task. He has the liberty to start from and end with any city he likes. Please help him out.
Input
The input file has several test cases. First line of each case has three integers: V (1 ≤ V ≤ 1000), the number of cities, E (0 ≤ E ≤ V * (V-1) / 2), the number of highways the inspector needs to check and T (1 ≤ T ≤ 10), time needed to pass a single highway. Each of the nextE lines contains two integers a and b (1 ≤ a,b ≤ V, a!=b) meaning the inspector has to check the highway between cities a and b. The input is terminated by a case with V=E=T=0. This case should not be processed.
Output
For each test case, print the serial of output followed by the minimum possible time the inspector needs to inspect all the highways on his list. Look at the output for sample input for details.
Sample Input Output for Sample Input
5 3 1 1 2 1 3 4 5 4 4 1 1 2 1 4 2 3 3 4 0 0 0 |
Case 1: 4 Case 2: 4 |
Problem setter: Mohammad Mahmudur Rahman,
Special Thanks: Abdullah al Mahmud & Syed Monowar Hossain
#include <cstdio>
#include <vector>
#include <cstring>
#include <cstdlib>
using namespace std;
// 节点结构体
typedef struct v_node
{
int val;
// struct v_node* child[20]; // 代表有边的节点
vector<struct v_node*> child;
int child_num;
vector<int> visit_flag;
// int visit_flag[20]; // 代表边是否走过
int not_visit_num; // 代表未走过的边数
}v_node;
// 记录全部节点
v_node node_table[1100];
// 记录有边的节点
vector<v_node*> node_array;
// 记录已经走过的边数
int edge_count = 0;
void dfs_search(v_node* p);
v_node* begin_node = NULL;
int main()
{
int node_num, edge_num, time;
int g_count = 1;
while(scanf("%d %d %d", &node_num, &edge_num, &time) == 3 && !(node_num == 0 && edge_num == 0 && time == 0))
{
edge_count = 0;
for(int i = 1; i <= node_num; i++)
node_table[i].val = -1;
// memset(node_table, 0, sizeof(node_table));
node_array = vector<v_node*>();
/* if(g_count == 43)
{
printf("node_num: %d edge_num: %d time: %d\n", node_num, edge_num, time);
}
*/ // 读入各个边
for(int i = 1; i <= edge_num; i++)
{
int v1, v2;
scanf("%d %d", &v1, &v2);
if(node_table[v1].val == -1)
{
node_table[v1].val = v1;
node_table[v1].child_num = 0;
node_table[v1].not_visit_num = 0;
node_table[v1].child = vector<struct v_node*>();
node_table[v1].visit_flag = vector<int>();
node_array.push_back(&node_table[v1]);
}
if(node_table[v2].val == -1)
{
node_table[v2].val = v2;
node_table[v2].child_num = 0;
node_table[v2].not_visit_num = 0;
node_table[v2].child = vector<struct v_node*>();
node_table[v2].visit_flag = vector<int>();
node_array.push_back(&node_table[v2]);
}
v_node* p1 = &node_table[v1];
v_node* p2 = &node_table[v2];
p1->child.push_back(p2);
p1->visit_flag.push_back(0);
p1->child_num++;
p1->not_visit_num++;
p2->child.push_back(p1);
p2->visit_flag.push_back(0);
p2->child_num++;
p2->not_visit_num++;
}
int i;
int first_time = 1;
while(1)
{
int keep_flag = 0;
int begin = -1;
// 如果可能的话,选择一个边数为奇数的点开始遍历
for(i = 0; i < node_array.size(); i++)
{
if(node_array[i]->not_visit_num > 0)
keep_flag = 1;
if(node_array[i]->not_visit_num % 2 == 1)
{
begin = i;
break;
}
}
if(keep_flag == 0)
break;
// 如果没有找到就任选一个偶数边的节点来遍历
if(begin == -1)
{
for(i = 0; i < node_array.size(); i++)
{
if(node_array[i]->not_visit_num > 0)
{
begin = i;
break;
}
}
}
if(first_time == 0)
edge_count++;
else
first_time = 0;
// 利用深度优先遍历来找一条欧拉路径
// begin_node = node_array[begin];
dfs_search(node_array[begin]);
}
// printf("time: %d, edge_count: %d\n", time, edge_count);
printf("Case %d: %d\n", g_count, edge_count*time);
g_count++;
}
return 0;
}
// 利用深度优先遍历来找一条欧拉路径
// 在路径中,尽量选择偶数边的点来进行遍历
// 如果没有偶数边的点就任选一个点遍历
void dfs_search(v_node* p)
{
int next = -1;
for(int i = 0; i < p->child_num; i++)
{
if(p->visit_flag[i] == 0 && p->child[i]->not_visit_num % 2 == 0)
{
next = i;
break;
}
}
/*
if(next == -1)
{
for(int i = 0; i < p->child_num; i++)
{
if(p->visit_flag[i] == 0 && p->child[i] != begin_node)
{
next = i;
break;
}
}
}
*/
if(next == -1)
{
for(int i = 0; i < p->child_num; i++)
{
if(p->visit_flag[i] == 0)
{
next = i;
break;
}
}
}
// 如果没有节点可以遍历,终止
if(next == -1)
return;
p->visit_flag[next] = 1;
p->not_visit_num--;
v_node* q = p->child[next];
q->not_visit_num--;
for(int i = 0; i < q->child_num; i++)
{
if(q->child[i] == p)
{
q->visit_flag[i] = 1;
break;
}
}
// printf("edge: %d -> %d\n", p->val, q->val);
edge_count++;
dfs_search(q);
}
这道题目想到要用欧拉路径来做,如果存在的话,从有奇数边的点开始遍历,然后最终停止于奇数边的点(如果有的话)。
上面的代码有问题,没有考虑事先保存奇数点,但是UVa好像test cases比较弱,混过去了,以后再看。