大数据DMP画像系统

该内容主要介绍大数据DMP画像系统的目标与开发,包括掌握画像标签开发技巧、数据挖掘方法,以及业内系统架构。课程涵盖用户画像的基础属性、兴趣偏好、行为轨迹等标签体系,使用的技术包括spark、elasticsearch、hadoop等。系统应用于用户精准营销和商品推荐,同时也包含大数据面试技巧的相关指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

内容介绍

一、目标
1、掌握画像标签开发技巧
2、掌握数据挖掘技巧
3、了解业内画像和DMP系统的架构和开发
4、大数据结合业务场景落地
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
系统开发要求
涉及的技术要点:spark 、elasticsearch、hadoop 、hive 、LR GBDT等机器学习算法 开发工具:idea、eclipse 开发环境:spark2.2、hadoop2.7、hive1.2、hbase、redis 开发语言:scala、java、python、shell、sql

三、课程目录
课程一览
1、用户画像概述

什么是用户画像,为什么要用户画像,画像的场景应用 业内,facebook,阿里巴巴(达摩盘),腾讯(广点通)分析 打造自己的内部达摩盘,基本功能跟达摩盘一致

2、画像指标整理
2-1.基础属性。人的基础属性标签,包括地域、年龄、性别等。
2-2.兴趣偏好。这部分是投放端已有的定向能力,后期可规划更细的基于宝贝、店铺或行业的搜索选择,特定兴趣的定向功 能。
2-3.行为轨迹。基于兴趣偏好更细的行为(包括浏览、点击、成交、收藏、复购等),及不同时间段的行为交叉(包括1天、7天、30天的行为)。
2-4.消费能力。基于平台的支付交易,购物行为、交易额计算高中低,及类目上的高消费偏好。
2-5.好友关系。基于平台的关系链数据,推荐偏好该宝贝、店铺、行业的好友用户。
2-6.自定义人群。支持上传自定义人群包,lookalike扩展包的大小。

3、 画像标签体系建设和开发
3-1)基本属性 地域、年龄、性别、学历、职业
3- 2)兴趣偏好 品牌、 店铺、一级类目、场景、行业
3-3)消费能力 能力等级开发
3-4)特征人群 划分一些特定的人群,高活跃,低活跃,有车一族,奶爸一家
3-5)LBS属性 长居住地
3-6)用户轨迹 交易、浏览,收藏等

四、画像系统架构
功能:画像多维度分析、画像指标下钻分析、投放效果追踪分析 技术:基于es 、spark、hadoop 建设画像计算,以及数据存储和计算 模块:用户人群包(交集并集)、追踪分析、人群画像、人群对比模块开发

五、画像系统应用案例
用户精准营销
用户商品推荐

六、大数据面试技巧
hadoop、hive、spark常见面试问题以及解答

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值