背景
当我们训练好一个模型之后,将其保存下来之后下次就可以直接使用而不需要再次耗费很多时间去重新对模型进行训练。
使用python自带的pickle
例1:
from sklearn.ensemble import RandomForestClassifier
from sklearn import datasets
import pickle
#方法一:python自带的pickle
(X,y) = datasets.load_iris(return_X_y=True)
rfc = RandomForestClassifier(n_estimators=100,max_depth=100)
rfc.fit(X,y)
print(rfc.predict(X[0:1,:]))
#save model
f = open('saved_model/rfc.pickle','wb')
pickle.dump(rfc,f)
f.close()
#load model
f = open('saved_model/rfc.pickle','rb')
rfc1 = pickle.load(f)
f.close()
print(rfc1.predict(X[0:1,:]))
例2:
from sklearn import svm
from sklearn import datasets
clf = svm.SVC()
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf.fit(X, y)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)
import pickle
s = pickle.dumps(clf)
clf2 = pickle.loads(s)
clf2.predict(X[0:1])
使用sklearn中的模块joblib
这种方式更加推荐,速度更快
核心代码只有两行
from sklearn.ensemble import RandomForestClassifier
from sklearn import datasets
import joblib
#方法二:使用sklearn中的模块joblib
(X,y) = datasets.load_iris(return_X_y=True)
rfc = RandomForestClassifier(n_estimators=100,max_depth=100)
rfc.fit(X,y)
print(rfc.predict(X[0:1,:]))
#save model
joblib.dump(rfc, 'saved_model/rfc.pkl')
#load model
rfc2 = joblib.load('saved_model/rfc.pkl')
print(rfc2.predict(X[0:1,:]))
实例
1、训练模型
import numpy as np
from sklearn.linear_model import LogisticRegression
X_train = np.array([[1,2,3],[4,5,6],[10,9,8]])
Y_train = np.array([0,0,1])
X_test = np.array([[2,3,4],[9,8,7]])
Y_test = np.array([0,1])
# 逻辑回归模型
LR = LogisticRegression()
# 训练模型
LR.fit(X_train,Y_train)
print('预测结果:\n', LR.predict(X_test))
print('预测各标签的概率值:\n', LR.predict_proba(X_test))
print('训练集准确率:', LR.score(X_train,Y_train))
print('测试集准确率:', LR.score(X_test,Y_test))
2、创建文件目录,保存模型
import os
from sklearn.externals import joblib
# 创建文件目录
dirs = 'testModel'
if not os.path.exists(dirs):
os.makedirs(dirs)
# 保存模型
joblib.dump(LR, dirs+'/LR.pkl')
3、读取模型
# 读取模型
LR = joblib.load(dirs+'/LR.pkl')
test = np.array([[3,4,5],[8,7,6]])
print('预测结果:\n', LR.predict(test))