系列文章目录
文章目录
Bidirectional Encoder Representations fromTransformers(BERT)
import torch
from torch import nn
from d2l import torch as d2l
输入表示
🏷subsec_bert_input_rep
在自然语言处理中,有些任务(如情感分析)以单个文本作为输入,而有些任务(如自然语言推断)以一对文本序列作为输入。BERT输入序列明确地表示单个文本和文本对。当输入为单个文本时,BERT输入序列是特殊类别词元“<cls>”、文本序列的标记、以及特殊分隔词元“<sep>”的连结。当输入为文本对时,BERT输入序列是“<cls>”、第一个文本序列的标记、“<sep>”、第二个文本序列标记、以及“<sep>”的连结。我们将始终如一地将术语“BERT输入序列”与其他类型的“序列”区分开来。例如,一个BERT输入序列可以包括一个文本序列或两个文本序列。
为了区分文本对,根据输入序列学到的片段嵌入 e A \mathbf{e}_A eA和 e B \mathbf{e}_B eB分别被添加到第一序列和第二序列的词元嵌入中。对于单文本输入,仅使用 e A \mathbf{e}_A eA。
下面的get_tokens_and_segments
将一个句子或两个句子作为输入,然后返回BERT输入序列的标记及其相应的片段索引,也就是个我一两个句子使其变成bert的输入。
#@save
def get_tokens_and_segments(tokens_a, tokens_b=None):
"""获取输入序列的词元及其片段索引"""
tokens = ['<cls>'] + tokens_a + ['<sep>']
# 0和1分别标记片段A和B
segments = [0] * (len(tokens_a) + 2)
if tokens_b is not None:
tokens += tokens_b + ['<sep>']
segments += [1] * (len(tokens_b) + 1)
return tokens, segments
BERT选择Transformer编码器作为其双向架构。在Transformer编码器中常见是,位置嵌入被加入到输入序列的每个位置。然而,与原始的Transformer编码器不同,BERT使用可学习的位置嵌入。总之,
:numref:fig_bert-input
表明BERT输入序列的嵌入是词元嵌入、片段嵌入和位置嵌入的和。
🏷fig_bert-input
下面的BERTEncoder
类类似于 :numref:sec_transformer
中实现的TransformerEncoder
类。与TransformerEncoder
不同,BERTEncoder
使用片段嵌入和可学习的位置嵌入。
#@save
class BERTEncoder(nn.Module):
"""BERT编码器"""
def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
ffn_num_hiddens, num_heads, num_layers, dropout,
max_len=1000, key_size&