Lock

Java并发编程:Lock

  在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。

  也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西

  以下是本文目录大纲:

  一.synchronized的缺陷

  二.java.util.concurrent.locks包下常用的类

  三.锁的相关概念介绍

  若有不正之处请多多谅解,并欢迎批评指正。

  请尊重作者劳动成果,转载请标明原文链接:

   http://www.cnblogs.com/dolphin0520/p/3923167.html

一.synchronized的缺陷

  synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?

  在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

  1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

  2)线程执行发生异常,此时JVM会让线程自动释放锁。

  那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

  因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

  再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

  但是采用synchronized关键字来实现同步的话,就会导致一个问题:

  如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

  因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

  另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

  总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

  1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

  2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

二.java.util.concurrent.locks包下常用的类

  下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。

  1.Lock

  首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

1
2
3
4
5
6
7
8
public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    void unlock();
    Condition newCondition();
}

   下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

  在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

  首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

  由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

1
2
3
4
5
6
7
8
9
Lock lock = ...;
lock.lock();
try{
    //处理任务
}catch(Exception ex){
     
}finally{
    lock.unlock();   //释放锁
}

  tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

  tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

  所以,一般情况下通过tryLock来获取锁时是这样使用的:

1
2
3
4
5
6
7
8
9
10
11
12
Lock lock = ...;
if(lock.tryLock()) {
     try{
         //处理任务
     }catch(Exception ex){
         
     }finally{
         lock.unlock();   //释放锁
     
}else {
    //如果不能获取锁,则直接做其他事情
}

   lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

  由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

  因此lockInterruptibly()一般的使用形式如下:

1
2
3
4
5
6
7
8
9
public void method() throws InterruptedException {
    lock.lockInterruptibly();
    try {  
     //.....
    }
    finally {
        lock.unlock();
    }  
}

  注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

  因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

  而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

  2.ReentrantLock

  ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

  例子1,lock()的正确使用方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();    //注意这个地方
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了锁");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+"释放了锁");
            lock.unlock();
        }
    }
}

   各位朋友先想一下这段代码的输出结果是什么?

Thread-0得到了锁
Thread-1得到了锁
Thread-0释放了锁
Thread-1释放了锁

  也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

  知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意这个地方
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了锁");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+"释放了锁");
            lock.unlock();
        }
    }
}

   这样就是正确地使用Lock的方法了。

  例子2,tryLock()的使用方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意这个地方
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        if(lock.tryLock()) {
            try {
                System.out.println(thread.getName()+"得到了锁");
                for(int i=0;i<5;i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {
                // TODO: handle exception
            }finally {
                System.out.println(thread.getName()+"释放了锁");
                lock.unlock();
            }
        } else {
            System.out.println(thread.getName()+"获取锁失败");
        }
    }
}

   输出结果:

View Code

  例子3,lockInterruptibly()响应中断的使用方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public class Test {
    private Lock lock = new ReentrantLock();   
    public static void main(String[] args)  {
        Test test = new Test();
        MyThread thread1 = new MyThread(test);
        MyThread thread2 = new MyThread(test);
        thread1.start();
        thread2.start();
         
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }  
     
    public void insert(Thread thread) throws InterruptedException{
        lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
        try {  
            System.out.println(thread.getName()+"得到了锁");
            long startTime = System.currentTimeMillis();
            for(    ;     ;) {
                if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                    break;
                //插入数据
            }
        }
        finally {
            System.out.println(Thread.currentThread().getName()+"执行finally");
            lock.unlock();
            System.out.println(thread.getName()+"释放了锁");
        }  
    }
}
 
class MyThread extends Thread {
    private Test test = null;
    public MyThread(Test test) {
        this.test = test;
    }
    @Override
    public void run() {
         
        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println(Thread.currentThread().getName()+"被中断");
        }
    }
}

  运行之后,发现thread2能够被正确中断。

  3.ReadWriteLock

  ReadWriteLock也是一个接口,在它里面只定义了两个方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading.
     */
    Lock readLock();
 
    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing.
     */
    Lock writeLock();
}

   一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

  4.ReentrantReadWriteLock

  ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

  下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

  假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
     
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
    }  
     
    public synchronized void get(Thread thread) {
        long start = System.currentTimeMillis();
        while(System.currentTimeMillis() - start <= 1) {
            System.out.println(thread.getName()+"正在进行读操作");
        }
        System.out.println(thread.getName()+"读操作完毕");
    }
}

   这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

View Code

  而改成用读写锁的话:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
     
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
    }  
     
    public void get(Thread thread) {
        rwl.readLock().lock();
        try {
            long start = System.currentTimeMillis();
             
            while(System.currentTimeMillis() - start <= 1) {
                System.out.println(thread.getName()+"正在进行读操作");
            }
            System.out.println(thread.getName()+"读操作完毕");
        } finally {
            rwl.readLock().unlock();
        }
    }
}

   此时打印的结果为:

View Code

  说明thread1和thread2在同时进行读操作。

  这样就大大提升了读操作的效率。

  不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

  如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

  关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档。

  5.Lock和synchronized的选择

  总结来说,Lock和synchronized有以下几点不同:

  1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

  2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

  3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

  4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

  5)Lock可以提高多个线程进行读操作的效率。

  在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

三.锁的相关概念介绍

  在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。

  1.可重入锁

  如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

  看下面这段代码就明白了:

1
2
3
4
5
6
7
8
9
class MyClass {
    public synchronized void method1() {
        method2();
    }
     
    public synchronized void method2() {
         
    }
}

   上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。

  而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

  2.可中断锁

  可中断锁:顾名思义,就是可以相应中断的锁。

  在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

  如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

  在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

  3.公平锁

  公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

  非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

  在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

  而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

  看一下这2个类的源代码就清楚了:

  

  在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。

  我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:

1
ReentrantLock lock = new ReentrantLock(true);

   如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。

  

  另外在ReentrantLock类中定义了很多方法,比如:

  isFair()        //判断锁是否是公平锁

  isLocked()    //判断锁是否被任何线程获取了

  isHeldByCurrentThread()   //判断锁是否被当前线程获取了

  hasQueuedThreads()   //判断是否有线程在等待该锁

  在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

  4.读写锁

  读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

  正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

  ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。

  可以通过readLock()获取读锁,通过writeLock()获取写锁。

  上面已经演示过了读写锁的使用方法,在此不再赘述。

<think>首先,用户再次提出了问题,提到“参考站内引用”,但这些引用来自之前的上下文,不是用户的当前需求。用户说:“上述引用仅供参考,并不是用户真正的需求,请尽可能多的参考用户上一次的问题和你的回答。” 所以,我需要专注于用户当前的问题。 用户在说:“我想了解Qt中QMutex类的tryLock方法相关内容,可能是使用方法、注意事项等 请问Qt中QMutex类tryLock方法的使用和相关介绍” 所以,核心问题是:解释Qt中QMutex类的tryLock方法,包括使用方法、注意事项等。 现在,回顾系统级指令: - 所有行内数学表达式使用$...$格式(但这个问题不涉及数学,所以我可能不需要使用)。 - 独立公式使用$$...$$并单独成段(同样,可能不适用)。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识(用户提供了引用[^1][^2][^3],我需要引用这些)。 用户提供了三个引用: - 引用[1]:关于QMutex的基本使用,包括lock()和tryLock()。 - 引用[2]:QMutex的目的,建议与QMutexLocker一起使用。 - 引用[3]:解释lock()是阻塞式,tryLock()是非阻塞式的选项。 由于用户指定尽可能参考上一次的问题和回答,但这是新问题,我需要基于这些引用回答。 结构我的回答: 1. **介绍tryLock方法**:解释它的作用。 2. **使用方法**:如何使用tryLock()。 3. **注意事项**:何时使用、潜在问题等。 最后,生成相关问题。 用户提到“回答中引用的段落末尾自然地添加引用标识”,所以我应该在引用内容时添加[^1][^2][^3]。 完整回答结构: - 开头介绍QMutex tryLock方法。 - 详细解释使用方法。 - 讨论注意事项。 - 生成相关问题。 确保使用中文,因为指令说“使用中文回答”。 内容大纲: 1. **什么是tryLock方法?** - tryLock()是非阻塞版本的lock()方法。它尝试获取互斥锁,如果成功则返回true,否则立即返回false而不阻塞。 - 引用[3]提到:“QMutex的lock其实是阻塞式的,如果不能够取得锁那么没有办法继续往下执行。如果想要弄成非阻塞式的,那么就要用tryLock,并设置超时时长。” 2. **使用方法**: - 基本语法:QMutex mutex; if (mutex.tryLock()) { /* 锁定成功,访问共享资源 */ mutex.unlock(); } else { /* 锁定失败,处理失败情况 */ } - 可以与tryLock()一起使用超时参数,如mutex.tryLock(timeout)。 - 引用[2]建议使用QMutexLocker来简化锁定和解锁。 - QMutexLocker locker(&mutex); // 在作用域结束时自动解锁 - 但tryLock()需要手动处理。 3. **注意事项**: - **避免死锁**:确保在成功锁定后解锁资源。使用RAII对象如QMutexLocker可以避免忘记解锁。 - **性能**:在竞争激烈时,tryLock()可能比lock()更有效,因为不会阻塞线程。 - **超时选项**:tryLock()可以接受超时参数,例如tryLock(timeout_ms),如果指定时间内无法获取锁则返回。 - **错误处理**:在tryLock()失败时,需要有备用计划,比如重试或放弃。 - 引用[1]提到:“tryLock()是lock()的一种非阻塞替代方法。” 和 “QMutex经过优化,可以在非竞争情况下快速运行。” 4. **示例代码**:提供一个简单的代码示例来演示tryLock的使用。 - 使用C++和Qt语法。 最后,生成相关问题: - §§相关问题§§ - 例如:1. 如何避免在多线程中使用QMutex时的死锁问题? 2. QMutexLocker如何简化互斥锁的管理? 3. 在Qt中,tryLocklock相比有哪些优势和劣势? 确保引用正确添加。 </think>### Qt中QMutex类tryLock方法的使用和相关介绍 在Qt多线程编程中,QMutex类用于保护共享资源,防止多个线程同时访问导致数据竞争。其中,tryLock()方法是lock()的非阻塞替代方案,它允许线程尝试获取锁而不阻塞当前线程的执行。这对于需要在避免死锁或提高响应性的场景非常有用。以下我将详细介绍tryLock方法的使用方法、注意事项,并基于您提供的引用[^1][^2][^3]进行解释(引用内容将自然地添加到相关段落末尾)。 #### 1. tryLock方法的基本概念和作用 tryLock()方法尝试获取互斥锁。如果锁可用(即未被其他线程占用),它会立即锁定资源并返回true;如果锁不可用,它会立即返回false而不阻塞线程。这与lock()方法不同,lock()会阻塞线程直到锁可用。tryLock()特别适合需要在非阻塞环境中处理锁竞争的情况,例如在高并发或实时系统中避免线程停滞[^3]。 此外,tryLock()可以接受一个可选的超时参数(单位毫秒),例如tryLock(int timeout),它会在指定时间内尝试获取锁,超时后返回false。这使得线程可以在等待锁时设置最大容忍时间,提升系统灵活性[^1]。 #### 2. tryLock方法的使用方法 使用tryLock()的基本步骤包括:尝试获取锁、检查返回值、访问共享资源、以及确保解锁。以下是详细的使用说明和示例代码。 ##### 基本语法和步骤 ```cpp QMutex mutex; // 创建一个互斥锁对象 // 尝试获取锁 if (mutex.tryLock()) { // 锁定成功:访问共享资源 // ... 这里是临界区代码,例如修改共享数据 ... mutex.unlock(); // 必须手动解锁资源 } else { // 锁定失败:处理失败情况,例如重试或返回错误 qDebug() << "Failed to acquire lock, resource busy."; } ``` - **关键点**: - **tryLock()返回bool值**:true表示成功获取锁,false表示失败。 - **手动解锁**:与lock()不同,tryLock()成功后必须调用unlock()来释放锁,否则会导致死锁或资源泄漏。 - **超时参数**:使用tryLock(int timeout)可以指定等待时间,例如mutex.tryLock(100)表示最多等待100毫秒。 ##### 示例代码:结合超时处理 以下是一个完整示例,展示如何在一个多线程应用中使用tryLock()来安全访问共享资源: ```cpp #include <QMutex> #include <QDebug> #include <QThread> QMutex mutex; int sharedCounter = 0; class WorkerThread : public QThread { protected: void run() override { // 尝试获取锁,等待100毫秒 if (mutex.tryLock(100)) { // 锁定成功:修改共享计数器 sharedCounter++; qDebug() << "Thread" << QThread::currentThreadId() << "updated counter:" << sharedCounter; mutex.unlock(); // 解锁 } else { qDebug() << "Thread" << QThread::currentThreadId() << "failed to lock, retrying later."; } } }; int main() { WorkerThread thread1; WorkerThread thread2; thread1.start(); thread2.start(); thread1.wait(); thread2.wait(); return 0; } ``` 在这个例子中,两个线程尝试同时修改sharedCounter。如果tryLock(100)成功,线程更新计数器;否则输出错误信息并跳过操作,避免阻塞整个线程。这确保了在高竞争环境中的响应性[^3]。 ##### 使用QMutexLocker简化管理 虽然tryLock()需要手动解锁,但Qt建议使用QMutexLocker类来自动管理锁的生命周期(RAII模式)。但注意,QMutexLocker默认使用lock()方法。如果需要非阻塞行为,可以将tryLock()与自定义逻辑结合: ```cpp QMutex mutex; { if (mutex.tryLock()) { QMutexLocker locker(&mutex); // 传入已锁定的mutex,locker在作用域结束时自动解锁 // 访问共享资源 } } ``` 这种方式减少了忘记解锁的风险,但tryLock()的调用仍需手动处理[^2]。 #### 3. 注意事项 在使用tryLock()时,需要注意以下几点以避免常见错误: - **死锁风险**:如果tryLock()成功但忘记调用unlock(),会导致锁未被释放,其他线程永远无法获取锁。建议使用QMutexLocker或确保在每个成功锁定后调用unlock()。Qt的QMutex经过优化,在非竞争情况下开销很小,但错误使用可能引发性能问题[^1]。 - **性能考量**:在锁竞争激烈时,tryLock()比lock()更高效,因为它避免了线程阻塞。但如果频繁调用tryLock()失败,可能导致CPU使用率升高(例如在循环中重试)。此时,应结合超时参数或退避策略(如指数退避)来优化[^3]。 - **线程安全与共享资源**:tryLock()只保护被锁定的临界区。确保共享资源的所有访问点都使用同一个QMutex实例。如果多个互斥锁嵌套使用(如递归锁),优先使用QMutex::Recursive模式,但tryLock()本身不支持递归特性。 - **超时设置**:超时参数(如mutex.tryLock(500))可以防止线程无限等待,但设置过长可能降低响应性,过短可能导致误判。在实时系统中,建议基于应用需求测试和调整超时值[^1]。 - **错误处理**:始终处理tryLock()返回false的情况。例如,在GUI应用中,锁定失败时可以显示提示信息或重试;在服务器端,可能需要日志记录或异步回退策略。 总之,tryLock()是处理非阻塞锁定的利器,尤其适合需要高并发或低延迟的场景,但必须谨慎管理锁生命周期以避免副作用[^2][^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值