UDP数据包大小问题

本文详细探讨了UDP编程中包大小的最佳实践。考虑到局域网和互联网的不同需求,文章建议在局域网环境下将UDP包大小控制在1472字节以内,在互联网环境下则应控制在548字节以内。

在进行UDP编程的时候,我们最容易想到的问题就是,一次发送多少bytes好?

       当然,这个没有唯一答案,相对于不同的系统,不同的要求,其得到的答案是不一样的,这里仅对像ICQ一类的发送聊天消息的情况作分析,对于其他情况,或许也能得到一点帮助:
首先,我们知道,TCP/IP通常被认为是一个四层协议系统,包括链路层,网络层,传输层,应用层.UDP属于运输层,下面我们由下至上一步一步来看:
以太网(Ethernet)数据帧的长度必须在46-1500字节之间,这是由以太网的物理特性决定的.这个1500字节被称为链路层的MTU(最大传输单元).但这并不是指链路层的长度被限制在1500字节,其实这个MTU指的是链路层的数据区.并不包括链路层的首部和尾部的18个字节.所以,事实上,这个1500字节就是网络层IP数据报的长度限制.因为IP数据报的首部为20字节,所以IP数据报的数据区长度最大为1480字节.而这个1480字节就是用来放TCP传来的TCP报文段或UDP传来的UDP数据报的.又因为UDP数据报的首部8字节,所以UDP数据报的数据区最大长度为1472字节.这个1472字节就是我们可以使用的字节数。:)
当我们发送的UDP数据大于1472的时候会怎样呢?这也就是说IP数据报大于1500字节,大于 MTU.这个时候发送方IP层就需要分片(fragmentation).把数据报分成若干片,使每一片都小于MTU.而接收方IP层则需要进行数据报的重组.这样就会多做许多事情,而更严重的是,由于UDP的特性,当某一片数据传送中丢失时,接收方便无法重组数据报.将导致丢弃整个UDP数据报。
因此,在普通的局域网环境下,我建议将UDP的数据控制在1472字节以下为好.
进行Internet编程时则不同,因为Internet上的路由器可能会将MTU设为不同的值.如果我们假定MTU为1500来发送数据的,而途经的某个网络的MTU值小于1500字节,那么系统将会使用一系列的机制来调整MTU值,使数据报能够顺利到达目的地,这样就会做许多不必要的操作.鉴于 Internet上的标准MTU值为576字节,所以我建议在进行Internet的UDP编程时.最好将UDP的数据长度控件在548字节 (576-8-20)以内.

理论上,IP数据报的最大长度是65535字节,这是由IP首部16比特总长度字段所限制的。去除20字节的IP首部和8个字节的UDP首部,UDP数据报中用户数据的最长长度为65507字节。但是,大多数实现所提供的长度比这个最大值小。
我们将遇到两个限制因素。第一,应用程序可能会受到其程序接口的限制。socket API提供了一个可供应用程序调用的函数,以设置接收和发送缓存的长度。对于UDP socket,这个长度与应用程序可以读写的最大UDP数据报的长度直接相关。现在的大部分系统都默认提供了可读写大于8192字节的UDP数据报(使用这个默认值是因为8192是NFS读写用户数据数的默认值)。
第二个限制来自于TCP/IP的内核实现。可能存在一些实现特性(或差错),使IP数据报长度小于65535字节。
在SunOS 4.1.3下使用环回接口的最大IP数据报长度是32767字节。比它大的值都会发生差错。
但是从BSD/386到SunOS 4.1.3的情况下,Sun所能接收到最大IP数据报长度为32786字节(即32758字节用户数据)。
在Solaris 2.2下使用环回接口,最大可收发IP数据报长度为65535字节。
从Solaris 2.2到AIX 3.2.2,发送的最大IP数据报长度可以是65535字节。很显然,这个限制与源端和目的端的实现有关。
主机必须能够接收最短为576字节的IP数据报。在许多UDP应用程序的设计中,其应用程序数据被限制成512字节或更小,因此比这个限制值小。
由于IP能够发送或接收特定长度的数据报并不意味着接收应用程序可以读取该长度的数据。因此,UDP编程接口允许应用程序指定每次返回的最大字节数。如果接收到的数据报长度大于应用程序所能处理的长度,那么会发生什么情况呢?不幸的是,该问题的答案取决于编程接口和实现。
典型的Berkeley版socket API对数据报进行截断,并丢弃任何多余的数据。应用程序何时能够知道,则与版本有关(4.3BSD Reno及其后的版本可以通知应用程序数据报被截断)。
SVR4 下的socket API(包括Solaris 2.x) 并不截断数据报。超出部分数据在后面的读取中返回。它也不通知应用程序从单个UDP数据报中多次进行读取操作。TLI API不丢弃数据。相反,它返回一个标志表明可以获得更多的数据,而应用程序后面的读操作将返回数据报的其余部分。在讨论TCP时,我们发现它为应用程序提供连续的字节流,而没有任何信息边界。TCP以应用程序读操作时所要求的长度来传送数据,因此,在这个接口下,不会发生数据丢失。

在进行UDP编程的时候,我们最容易想到的问题就是,一次发送多少bytes好?
当然,这个没有唯一答案,相对于不同的系统,不同的要求,其得到的答案是不一样的,我这里仅对
像ICQ一类的发送聊天消息的情况作分析,对于其他情况,你或许也能得到一点帮助:
首先,我们知道,TCP/IP通常被认为是一个四层协议系统,包括链路层,网络层,运输层,应用层.
UDP属于运输层,下面我们由下至上一步一步来看:
以太网(Ethernet)数据帧的长度必须在46-1500字节之间,这是由以太网的物理特性决定的.
这个1500字节被称为链路层的MTU(最大传输单元).
但这并不是指链路层的长度被限制在1500字节,其实这这个MTU指的是链路层的数据区.
并不包括链路层的首部和尾部的18个字节.
所以,事实上,这个1500字节就是网络层IP数据报的长度限制.
因为IP数据报的首部为20字节,所以IP数据报的数据区长度最大为1480字节.
而这个1480字节就是用来放TCP传来的TCP报文段或UDP传来的UDP数据报的.
又因为UDP数据报的首部8字节,所以UDP数据报的数据区最大长度为1472字节.
这个1472字节就是我们可以使用的字节数。:)

当我们发送的UDP数据大于1472的时候会怎样呢?
这也就是说IP数据报大于1500字节,大于MTU.这个时候发送方IP层就需要分片(fragmentation).
把数据报分成若干片,使每一片都小于MTU.而接收方IP层则需要进行数据报的重组.
这样就会多做许多事情,而更严重的是,由于UDP的特性,当某一片数据传送中丢失时,接收方便
无法重组数据报.将导致丢弃整个UDP数据报.

因此,在普通的局域网环境下,我建议将UDP的数据控制在1472字节以下为好.
进行Internet编程时则不同,因为Internet上的路由器可能会将MTU设为不同的值.
如果我们假定MTU为1500来发送数据的,而途经的某个网络的MTU值小于1500字节,那么系统将会使用一系列的机
制来调整MTU值,使数据报能够顺利到达目的地,这样就会做许多不必要的操作.

鉴于Internet上的标准MTU值为576字节,所以我建议在进行Internet的UDP编程时.
最好将UDP的数据长度控件在548字节(576-8-20)以内.

---------------------------------------------------------------转载分割线------------------------------------------------------

经测试,局域网环境下,UDP包大小为1024*8,速度达到2M/s,丢包情况理想.

外网环境下,UDP包大小为548,速度理想,丢包情况理想.

UDP数据包大小被限制在64KB(即65536字节),这一限制源自UDP头部中“长度”字段的设计。UDP头部含一个16位的字段用于表示整个UDP数据报的长度(UDP头部和数据部分)。由于16位所能表示的最大数值为2¹⁶,即65536,因此UDP数据报的最大长度被限制为65536字节(64KB)[^4]。 在UDP头部固定为8字节的前提下,实际可用于承载应用层数据的最大长度为65536 - 8 = 65528字节。这一限制与IP层或链路层的传输机制无关,而是由UDP协议本身的头部结构决定的。 尽管UDP协议本身允许最大64KB的数据报,但在实际网络环境中,发送如此大的UDP数据包往往不可行。例如,在以太网环境中,链路层的MTU(最大传输单元)通常为1500字节。IP数据报作为链路层数据帧的载荷,其最大长度为1500字节(除去20字节的IP头部,实际数据区为1480字节)。再扣除UDP头部的8字节UDP数据区的最大有效载荷为1472字节。若UDP数据报超过这一限制,IP层将进行分片传输,而UDP本身不负责分片和重组的可靠性。一旦某一片丢失,整个UDP数据报将被丢弃[^1]。 此外,在Internet环境中,不同网络设备可能设置不同的MTU值。为了保证传输的可靠性,通常建议UDP数据长度控制在548字节以内(基于576字节的标准MTU减去IP头部20字节UDP头部8字节)[^1]。 ### 示例代码 以下是一个简单的UDP数据报发送和接收的示例: ```python # UDP Sender Example import socket def send_udp_message(message, host='127.0.0.1', port=9999): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: # 发送UDP数据报 sock.sendto(message.encode(), (host, port)) print(f"Sent {len(message)} bytes of data.") finally: sock.close() ``` ```python # UDP Receiver Example import socket def receive_udp_message(port=9999): sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server_address = ('', port) sock.bind(server_address) print(f"Listening on port {port}...") while True: data, address = sock.recvfrom(65535) # 最大接收缓冲区大小 print(f"Received {len(data)} bytes from {address}: {data.decode()}") ``` ###
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值