零基础入门--中文命名实体识别(BiLSTM+CRF模型,含代码)

本文是初学者对命名实体识别的总结,介绍从中文分词到BiLSTM+CRF模型的实现过程。通过数据处理,将文本转化为BMEO标注形式,利用pytorch实现Bilstm+crf模型进行训练,并提供了测试与文件级别实体抽取的方法。同时,文章提及了准确度评估指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自己也是一个初学者,主要是总结一下最近的学习,大佬见笑。

中文分词

说到命名实体抽取,先要了解一下基于字标注的中文分词。
比如一句话

"我爱北京天安门”。

分词的结果可以是

“我/爱/北京/天安门”。

那什么是基于字标注呢?

“我/O 爱/O 北/B 京/E 天/B 安/M 门/E”。

就是这样,给每个字都进行一个标注。我们可以发现这句话中字的标注一共有四种。他们分别代表的意义如下。

B | 词首
M | 词中
E | 词尾
O | 单字

B表示一个词的开始,E表示一个词的结尾,M表示词中间的字。如果这个词只有一个字的话,用O表示。

命名实体识别

数据处理

了解了中文分词,那么实体识别也差不多。就是把不属于实体的字用O标注,把实体用BME规则标注,最后按照BME规则把实体提取出来就ok了。

数据可以自己标注,也可以找个公开的数据集先练练手。我是用的是玻森数据提供的命名实体识别数据,https://bosonnlp.com 这是官网,在数据下载里面有一个命名实体识别数据集,或者在我的github里下载。

这个数据集一个包含了6个实体类别:

time: 时间

评论 56
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值