python模块及包

一、简介

Python的代码导入分成两种:

  1. module:通常模块为一个文件,直接使用import来导入就好了。
  2. package:通常包总是一个目录,可以使用import导入包,或者from + import来导入包中的部分模块。
    包目录下为首的一个文件便是 init.py。然后是一些模块文件和子目录,
    假如子目录中也有 init.py 那么它就是这个包的子包了。

二、模块

1.你可以使用import语句将一个源代码文件作为模块导入.

python在执行import语句时,到底进行了什么操作,按照python的文档,它执行了如下操作:

第1步,创建一个新的,空的module对象(它可能包含多个module);

第2步,把这个module对象插入sys.module中

第3步,装载module的代码(如果需要,首先必须编译)

第4步,执行新的module中对应的代码。

在执行第3步时,首先要找到module程序所在的位置,其原理为:
如果需要导入的module的名字是m1,则解释器必须找到m1.py,它首先在当前目录查找,然后是在环境变量PYTHONPATH中查找。 PYTHONPATH可以视为系统的PATH变量一类的东西,其中包含若干个目录。如果PYTHONPATH没有设定,或者找不到m1.py,则继续搜索 与python的安装设置相关的默认路径,在Unix下,通常是/usr/local/lib/python。
事实上,搜索的顺序是:当前路径 (以及从当前目录指定的sys.path),然后是PYTHONPATH,然后是python的安装设置相关的默认路径。正因为存在这样的顺序,如果当前 路径或PYTHONPATH中存在与标准module同样的module,则会覆盖标准module。也就是说,如果当前目录下存在xml.py,那么执 行import xml时,导入的是当前目录下的module,而不是系统标准的xml。

内容概要:本文介绍了MATLAB实现DBN-RBF深度置信网络结合RBF神经网络多输入单输出回归预测的详细项目实例。项目旨在通过深度置信网络(DBN)和径向基函数神经网络(RBF)的结合,设计出一种高效的回归预测模型,以应对高维数据和非线性关系的挑战。DBN用于无监督特征提取,RBF用于快速回归,两者结合显著提升了预测精度和模型泛化能力。文中详细描述了项目的背景、目标、挑战、解决方案、模型架构、代码实现、GUI设计、性能评估及未来改进方向。 适合人群:具备一定编程基础,对机器学习和深度学习有一定了解的研发人员,尤其是从事金融预测、医疗健康、智能制造等领域的工程师和技术人员。 使用场景及目标:①解决高维数据的特征提取难题,提升非线性回归的拟合精度;②通过无监督学习与快速训练能力的结合,提高模型的预测精度和泛化能力;③应用于金融预测、医疗健康、智能制造等多个领域,提供高效的回归预测工具;④通过实时数据流处理和GPU加速推理,确保系统在实时应用中的快速响应。 其他说明:此项目不仅提供了详细的理论分析和代码实现,还涵盖了系统架构设计、模型部署与应用、安全性与用户隐私保护等方面的全面指导。通过结合其他深度学习模型、多任务学习、增量学习等技术,项目具备广阔的扩展性和应用前景。系统还支持自动化CI/CD管道、API服务与业务集成、前端展示与结果导出等功能,确保了系统的高可用性和易用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值