读论文《Hi-Net: Hybrid-fusion Network for Multi-modalMR Image Synthesis》

论文题目:Hi-Net:用于多模态磁共振图像合成的混合融合网络

论文地址:arxiv

项目地址:github

原项目可能在训练的时候汇报version的错,这是因为生成器和辨别器的优化有些逻辑错误,会改的话多加一个生成操作可以解决,项目已复现,看情况是否更新,

大家有问题可以留言

目的:通过融合多模态数据来提高模型性能,特别是在数据质量较差和患者退出频繁,难以为每个患者收集所有模态的情况下。

摘要:

        磁共振成像(MRI)是一种广泛使用的神经成像技术,可以提供不同对比度(即模式)的图像。事实证明,融合这种多模态数据对于提高许多任务中的模型性能特别有效。然而,由于数据质量差和患者频繁退出,收集每个患者的所有模式仍然是一个挑战。医学图像合成是一种有效的解决方案,它从现有的图像中合成缺失的图像。在本文中,我们提出了一种用于多模态磁共振图像合成的新型混合融合网络(Hi-Net),它学习从多模态源图像(即现有模态)到目标图像(即缺失模态)的映射。在我们的Hi-Net中,使用特定于模态的网络来学习每个单独模态的表示,并使用融合网络来学习多模态数据的共同潜在表示。然后,设计一个多模态合成网络,将潜在表示与每个模态的层次特征紧密结合,作为合成目标图像的生成器。此外,为了有效地利用多模态之间的相关性,提出了一种分层多模态融合策略,其中提出了混合融合块(MFB)自适应加权不同的融合策略(即元素求和、乘积和最大化)。大量的实验表明,该模型优于其他最先进的医学图像合成方法。

引言(Introduction)

  • 论文讨论了医学成像在临床应用中的重要性,特别是MRI技术。
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请站在我身后

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值