题目
Given a string containing just the characters ‘(’ and ‘)’, find the length of the longest valid (well-formed) parentheses substring.
Example 1:
Input: “(()”
Output: 2
Explanation: The longest valid parentheses substring is “()”
Example 2:
Input: “)()())”
Output: 4
Explanation: The longest valid parentheses substring is “()()”
我的想法
一开始只看了example,以为是判断连续的"()"
,submit的时候才发现是判断有效括号
//理解错误
class Solution {
public int longestValidParentheses(String s) {
int res = 0;
if(s == null || s.indexOf("()") == -1) return res;
while(s.indexOf("()") != -1 && s.length() > 1){
int count = 0;
s = s.substring(s.indexOf("()"));
while(s.indexOf("()") == 0){
count += 2;
s = s.substring(2);
}
if(count > res) res = count;
}
return res;
}
}
可以用栈来进行判断,"("
入栈,")"
出栈。如果正向循环结束栈不为空,则说明结尾处有不匹配的现象,进行反向循环。但对于")()())()()("
这种正向正确,反向不匹配的无法进行判断
public int longestValidParentheses(String s) {
if(s == null || s.length() < 2) return 0;
Deque<Character> stack = new ArrayDeque<Character>();
int count = 0, res = 0;
for(int i = 0; i < s.length(); i++){
if(s.charAt(i) == '(') stack.push('(');
else{
if(stack.isEmpty()){
count = 0;
continue;
}
stack.pop();
count++;
res = count>res ? count : res;
}
}
if(!stack.isEmpty()){
int recount = 0;
Deque<Character> stack2 = new ArrayDeque<Character>();
for(int i = s.length()-1; i >= 0; i--){
if(s.charAt(i) == ')') stack2.push(')');
else{
if(stack2.isEmpty()){
recount = 0;
continue;
}
stack2.pop();
recount++;
res = recount>res ? recount : res;
}
}
}
return res*2;
}
根据solution3的提示找到问题所在:应该在栈为空的时候计算有效对
class Solution {
public int longestValidParentheses(String s) {
if(s == null || s.length() < 2) return 0;
Deque<Character> stack = new ArrayDeque<Character>();
int count = 0, res = 0;
for(int i = 0; i < s.length(); i++){
if(s.charAt(i) == '(') stack.push('(');
else{
if(stack.isEmpty()){//不能在这计算有效对,如果完全匹配则无法判断
count = 0;
continue;
}
stack.pop();
count++;
//不能在这计算有效对,如果出栈不完全,会导致误认
}
if(stack.isEmpty()) res = count>res ? count : res;
}
if(!stack.isEmpty()){
int recount = 0;
Deque<Character> stack2 = new ArrayDeque<Character>();
for(int i = s.length()-1; i >= 0; i--){
if(s.charAt(i) == ')') stack2.push(')');
else{
if(stack2.isEmpty()){
recount = 0;
continue;
}
stack2.pop();
recount++;
}
if(stack2.isEmpty()) res = recount>res ? recount : res;
}
}
return res*2;
}
}
解答
leetcode solution 1: Using Stack
把序号压入栈中,可以通过序号查直接计算长度
public class Solution {
public int longestValidParentheses(String s) {
int maxans = 0;
Stack<Integer> stack = new Stack<>();
stack.push(-1);
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
stack.push(i);
}
else {
stack.pop();
if (stack.empty()) stack.push(i);
else maxans = Math.max(maxans, i - stack.peek());
}
}
return maxans;
}
}
leetcode solution 2: Using Dynamic Programming
分为两种情况:(()(())
s[i] == ')' && s[i-1] == '('
即'......()'
,dp[i]=dp[i−2]+2
s[i] == ')' && s[i-1] == ')'
即'......))'
,需要判读是否s[i - dp[i-1] - 1] == '('
,即前面是否能与之配对。如果等于。则dp[i] = dp[i−1] + dp[i−dp[i−1]−2] + 2
,其中dp[i−dp[i−1]−2]
类似于dp[i−2]
,即前项的有效括号数
public class Solution {
public int longestValidParentheses(String s) {
int maxans = 0;
int dp[] = new int[s.length()];
for (int i = 1; i < s.length(); i++) {
if (s.charAt(i) == ')') {
if (s.charAt(i - 1) == '(') {
dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;
}
else if (i - dp[i - 1] - 1 >= 0 && s.charAt(i - dp[i - 1] - 1) == '(') {
dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;
}
maxans = Math.max(maxans, dp[i]);
}
}
return maxans;
}
}
leetcode solution 3: Without extra space
感觉跟这道题的解法很像42. Trapping Rain Water
用left和right的++来表示出入栈,省空间。对于结尾处不完整的
public class Solution {
public int longestValidParentheses(String s) {
int left = 0, right = 0, maxlength = 0;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
left++;
}
else {
right++;
}
if (left == right) {//空栈
maxlength = Math.max(maxlength, 2 * right);
}
else if (right >= left) {//不匹配
left = right = 0;
}
}
left = right = 0;
for (int i = s.length() - 1; i >= 0; i--) {
if (s.charAt(i) == '(') {
left++;
}
else {
right++;
}
if (left == right) {
maxlength = Math.max(maxlength, 2 * left);
}
else if (left >= right) {
left = right = 0;
}
}
return maxlength;
}
}