
arXiv-2018
文章目录
1 Background and Motivation
现有人体检测公开数据集样本不够密集,遮挡也不够

Our goal is to push the boundary of human detection by specifically targeting the challenging crowd scenarios.
于是作者开源了一个密集场景的人体检测数据集
2 Related Work
- Human detection datasets
exhaustively annotating crowd regions is incredibly difficult and time consuming. - Human detection frameworks
3 Advantages / Contributions
开源了一个 larger-scale with much higher crowdness 的行人数据集——CrowdHuman,兼具 full body bounding box, the visible bounding box, and the head bounding box 标签,实验发现是一个强有力的预训练数据集
4 CrowdHuman Dataset
4.1 Data Collection
Google image search engine with ∼ 150 keywords for query.
搜索的关键字涵盖 40 different cities,various activities,numerous viewpoints,比如 Pedestrians on the Fifth Avenue
a keyword is limited to 500 to make the distribution of images balanced.
爬下来 ~2.5W 张,整理
15000, 4370 and 5000 images for training, validation, and testing respectively.
4.2 Image Annotation
先标 full boun

文章介绍了CrowdHuman,一个针对密集人群场景设计的大规模人体检测数据集,旨在推动人体检测技术的发展。数据集通过Google图片搜索引擎收集,并详细标注了全身体、可见身体和头部边界框。实验结果显示,该数据集对检测器如FPN和RetinaNet的预训练效果显著,且在交叉数据集评估中表现出良好的泛化能力。
最低0.47元/天 解锁文章
548

被折叠的 条评论
为什么被折叠?



