HDOJ 1711:Number Sequence KMP匹配

本文介绍如何使用KMP算法解决序列匹配问题,提供了一段AC代码,并详细解释了算法实现过程。针对给定的两个序列,找到使得后一序列成为前一序列子序列的最小索引。


     题目URL:http://acm.hdu.edu.cn/showproblem.php?pid=1711

     这道题目是单纯的KMP算法,而且不用改进的KMP就可以通过。没有什么特殊要注意的细节。

     我的AC代码:

#include <stdio.h>

const int Max = 1000000 + 10;
int a[Max], b[Max], next[Max];
int cases, m, n;


void getNext()
{
	next[0] = -1, next[1] = 0;
	int i = 1, j = 0;
	while(i < n)
	{
		if(j == -1 || b[j] == b[i])
		{
			++i, ++j;
			next[i] = j;
		}
		else j = next[j];
	}
}

int kmp()
{
	int i(0), j(0);

	while(j != n && i < m)
	{
		if(j == -1 || a[i] == b[j]) ++i, ++j;
		else j = next[j];
	}
	if(j == n) return i - n + 1;
	else return -1;
}

int main()
{	
	int result;
	scanf("%d", &cases);

	while(cases --)
	{
		scanf("%d%d", &m, &n);
		for(int i(0); i<m; i++) scanf("%d", a+i);
		for(int i(0); i<n; i++) scanf("%d", b+i);

		getNext();
		result = kmp();
		printf("%d\n", result);
	}
	return 0;
}

    原题如下:

Number Sequence

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 16886    Accepted Submission(s): 7420


Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
 

Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
 

Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
 

Sample Input
  
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
 

Sample Output
  
6 -1
 

Source
 

Recommend
lcy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bruce128

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值