题目URL:http://acm.hdu.edu.cn/showproblem.php?pid=1711
这道题目是单纯的KMP算法,而且不用改进的KMP就可以通过。没有什么特殊要注意的细节。
我的AC代码:
#include <stdio.h>
const int Max = 1000000 + 10;
int a[Max], b[Max], next[Max];
int cases, m, n;
void getNext()
{
next[0] = -1, next[1] = 0;
int i = 1, j = 0;
while(i < n)
{
if(j == -1 || b[j] == b[i])
{
++i, ++j;
next[i] = j;
}
else j = next[j];
}
}
int kmp()
{
int i(0), j(0);
while(j != n && i < m)
{
if(j == -1 || a[i] == b[j]) ++i, ++j;
else j = next[j];
}
if(j == n) return i - n + 1;
else return -1;
}
int main()
{
int result;
scanf("%d", &cases);
while(cases --)
{
scanf("%d%d", &m, &n);
for(int i(0); i<m; i++) scanf("%d", a+i);
for(int i(0); i<n; i++) scanf("%d", b+i);
getNext();
result = kmp();
printf("%d\n", result);
}
return 0;
}
原题如下:
Number Sequence
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 16886 Accepted Submission(s): 7420
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
Source
Recommend
lcy