了解tarjan算法之前你需要知道:强连通,强连通图,强连通分量。
强连通(strongly connected): 在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通。
强连通图: 如果 在一个有向图G中,每两个点都强连通,我们就叫这个图,强连通图。
强连通分量(strongly connected components):在一个有向图G中,有一个子图,这个子图每2个点都满足强连通,我们就叫这个子图叫做 强连通分量。
tarjan算法,之所以用DFS就是因为它将每一个强连通分量作为搜索树上的一个子树。而这个图,就是一个完整的搜索树。
为了使这颗搜索树在遇到强连通分量的节点的时候能顺利进行。每个点都有两个参数。
1,DFN[]作为这个点搜索的次序编号(时间戳),简单来说就是 第几个被搜索到的。%每个点的时间戳都不一样%。
2,LOW[]作为每个点在这颗树中的,最小的子树的根,每次保证最小,like它的父亲结点的时间戳这种感觉。如果它自己的LOW[]最小,那这个点就应该从新分配,变成这个强连通分量子树的根节点。
ps:每次找到一个新点,这个点LOW[]=DFN[]。
而为了存储整个强连通分量,这里挑选的容器是,堆栈。每次一个新节点出现,就进站,如果这个点有 出度 就继续往下找。直到找到底,每次返回上来都看一看子节点与这个节点的LOW值,谁小就取谁,保证最小的子树根。如果找到DFN[]==LOW[]就说明这个节点是这个强连通分量的根节点(毕竟这个LOW[]值是这个强连通分量里最小的。)最后找到强连通分量的节点后,就将这个栈里,比此节点后进来的节点全部出栈,它们就组成一个全新的强连通分量。
先给出tarjan算法的伪代码:
tarjan(u)
{
DFN[u]=Low[u]=++Index//为节点u设定次序编号和Low初值
Stack.push(u)//将节点u压入栈中
for each(u,v) in E//枚举每一条边
if (visnotvisted)//如果节点v未被访问过
tarjan(v)//继续向下找
Low[u]=min(Low[u],Low[v])
else if (vinS)//如果节点v还在栈内
Low[u]=min(Low[u],DFN[v])
if (DFN[u]==Low[u])//如果节点u是强连通分量的根
repeat{
v=S.pop//将v退栈,为该强连通分量中一个顶点
printv
until(u==v)
}
}
首先来一张有向图。网上到处都是这个图。我们就一点一点来模拟整个算法。
从1进入 DFN[1]=LOW[1]= ++index ----1
入栈 1
由1进入2 DFN[2]=LOW[2]= ++index ----2
入栈 1 2
之后由2进入3 DFN[3]=LOW[3]= ++index ----3
入栈 1 2 3
之后由3进入 6 DFN[6]=LOW[6]=++index ----4
入栈 1 2 3 6
之后发现 嗯? 6无出度,之后判断 DFN[6]==LOW[6]
说明6是个强连通分量的根节点:6及6以后的点 出栈。
栈: 1 2 3
之后退回 节点3 Low[3] = min(Low[3], Low[6]) LOW[3]还是 3
节点3 也没有再能延伸的边了,判断 DFN[3]==LOW[3]
说明3是个强连通分量的根节点:3及3以后的点 出栈。
栈: 1 2
之后退回 节点2 嗯?!往下到节点5
DFN[5]=LOW[5]= ++index -----5
入栈 1 2 5
ps:你会发现在有向图旁边的那个丑的(划掉)搜索树 用红线剪掉的子树,那个就是强连通分量子树。每次找到一个。直接。一剪子下去。半个子树就没有了。。
结点5 往下找,发现节点6 DFN[6]有值,被访问过。就不管它。
继续 5往下找,找到了节点1 他爸爸的爸爸。。DFN[1]被访问过并且还在栈中,说明1还在这个强连通分量中,值得发现。 Low[5] = min(Low[5], DFN[1])
确定关系,在这棵强连通分量树中,5节点要比1节点出现的晚。所以5是1的子节点。so
LOW[5]= 1
由5继续回到2 Low[2] = min(Low[2], Low[5])
LOW[2]=1;
由2继续回到1 判断 Low[1] = min(Low[1], Low[2])
LOW[1]还是 1
1还有边没有走过。发现节点4,访问节点4
DFN[4]=LOW[4]=++index ----6
入栈 1 2 5 4
由节点4,走到5,发现5被访问过了,5还在栈里,
Low[4] = min(Low[4], DFN[5]) LOW[4]=5
说明4是5的一个子节点。
由4回到1.
回到1,判断 Low[1] = min(Low[1], Low[4])
LOW[1]还是 1 。
判断 LOW[1] == DFN[1]
诶?!相等了 说明以1为根节点的强连通分量已经找完了。
将栈中1以及1之后进栈的所有点,都出栈。
栈 :(鬼都没有了)
这个时候就完了吗?!
你以为就完了吗?!
然而并没有完,万一你只走了一遍tarjan整个图没有找完怎么办呢?!
所以。tarjan的调用最好在循环里解决。
如果这个点没有被访问过,那么就从这个点开始tarjan一遍。
因为这样好让每个点都被访问到。
好了,讲完了,来道例题练练手吧:
HDU1269 迷宫城堡
3 3 1 2 2 3 3 1 3 3 1 2 2 3 3 2 0 0
Yes No
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 10010;//点数
const int MAXE = 100010;//边数
struct Edge
{
int to, next;
}edge[MAXE];
int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN];
int Index, top;
int scc;//强连通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强连通分量包含的节点数
void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void Tarjan(int u)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(!DFN[v])
{
Tarjan(v);
if(Low[u] > Low[v]) Low[u] = Low[v];
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
scc++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
}
while(v != u);
}
}
void SCC(int N)
{
memset(DFN, 0, sizeof(DFN));
memset(Instack, false, sizeof(Instack));
memset(num, 0, sizeof(num));
Index = scc = top = 0;
for(int i = 1; i <= N; ++i)
if(!DFN[i])
Tarjan(i);
}
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
}
int main()
{
int n, m;
while(scanf("%d%d", &n, &m) != EOF && (n || m))
{
init();
int u, v;
while(m--)
{
scanf("%d%d", &u, &v);
addedge(u, v);
}
SCC(n);
if(scc == 1)
printf("Yes\n");
else printf("No\n");
}
return 0;
}
另外,用tarjan算法同样可以用来求无向图的强连通分量的数量,存边时一条无向边相当于两条方向相反的有向边,然后dfs时注意不要往父节点扩展即可。