tarjan算法的详解

本文详细解析了Tarjan算法,介绍了强连通、强连通图和强连通分量的概念。通过DFS的方式,利用DFN和LOW两个参数确定强连通分量的根节点,并使用堆栈来存储和找出强连通分量。文中通过具体的有向图例子,逐步演示了Tarjan算法的执行过程,解释了如何找到并剪掉强连通分量的子树。最后强调了Tarjan算法通常应在循环中调用来确保图中所有点都被遍历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

了解tarjan算法之前你需要知道:强连通,强连通图,强连通分量。

强连通(strongly connected): 在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通。


强连通图: 如果 在一个有向图G中,每两个点都强连通,我们就叫这个图,强连通图。


强连通分量(strongly connected components):在一个有向图G中,有一个子图,这个子图每2个点都满足强连通,我们就叫这个子图叫做 强连通分量。


tarjan算法,之所以用DFS就是因为它将每一个强连通分量作为搜索树上的一个子树。而这个图,就是一个完整的搜索树。
为了使这颗搜索树在遇到强连通分量的节点的时候能顺利进行。每个点都有两个参数。
1,DFN[]作为这个点搜索的次序编号(时间戳),简单来说就是 第几个被搜索到的。%每个点的时间戳都不一样%。
2,LOW[]作为每个点在这颗树中的,最小的子树的根,每次保证最小,like它的父亲结点的时间戳这种感觉。如果它自己的LOW[]最小,那这个点就应该从新分配,变成这个强连通分量子树的根节点。
ps:每次找到一个新点,这个点LOW[]=DFN[]。

而为了存储整个强连通分量,这里挑选的容器是,堆栈。每次一个新节点出现,就进站,如果这个点有 出度 就继续往下找。直到找到底,每次返回上来都看一看子节点与这个节点的LOW值,谁小就取谁,保证最小的子树根。如果找到DFN[]==LOW[]就说明这个节点是这个强连通分量的根节点(毕竟这个LOW[]值是这个强连通分量里最小的。)最后找到强连通分量的节点后,就将这个栈里,比此节点后进来的节点全部出栈,它们就组成一个全新的强连通分量。


先给出tarjan算法的伪代码:
tarjan(u)
{
    DFN[u]=Low[u]=++Index//为节点u设定次序编号和Low初值
    Stack.push(u)//将节点u压入栈中
    for each(u,v) in E//枚举每一条边
        if (visnotvisted)//如果节点v未被访问过
            tarjan(v)//继续向下找
            Low[u]=min(Low[u],Low[v])
        else if (vinS)//如果节点v还在栈内
                Low[u]=min(Low[u],DFN[v])
    if (DFN[u]==Low[u])//如果节点u是强连通分量的根
    repeat{
        v=S.pop//将v退栈,为该强连通分量中一个顶点
        printv
        until(u==v)
    }
}


首先来一张有向图。网上到处都是这个图。我们就一点一点来模拟整个算法。

从1进入 DFN[1]=LOW[1]= ++index ----1
入栈 1
由1进入2 DFN[2]=LOW[2]= ++index ----2
入栈 1 2
之后由2进入3 DFN[3]=LOW[3]= ++index ----3
入栈 1 2 3
之后由3进入 6 DFN[6]=LOW[6]=++index ----4
入栈 1 2 3 6

之后发现 嗯? 6无出度,之后判断 DFN[6]==LOW[6]
说明6是个强连通分量的根节点:6及6以后的点 出栈。
栈: 1 2 3
之后退回 节点3 Low[3] = min(Low[3], Low[6]) LOW[3]还是 3
节点3 也没有再能延伸的边了,判断 DFN[3]==LOW[3]
说明3是个强连通分量的根节点:3及3以后的点 出栈。
栈: 1 2
之后退回 节点2 嗯?!往下到节点5
DFN[5]=LOW[5]= ++index -----5
入栈 1 2 5

ps:你会发现在有向图旁边的那个丑的(划掉)搜索树 用红线剪掉的子树,那个就是强连通分量子树。每次找到一个。直接。一剪子下去。半个子树就没有了。。

结点5 往下找,发现节点6 DFN[6]有值,被访问过。就不管它。
继续 5往下找,找到了节点1 他爸爸的爸爸。。DFN[1]被访问过并且还在栈中,说明1还在这个强连通分量中,值得发现。 Low[5] = min(Low[5], DFN[1])
确定关系,在这棵强连通分量树中,5节点要比1节点出现的晚。所以5是1的子节点。so
LOW[5]= 1

由5继续回到2 Low[2] = min(Low[2], Low[5])
LOW[2]=1;
由2继续回到1 判断 Low[1] = min(Low[1], Low[2])
LOW[1]还是 1
1还有边没有走过。发现节点4,访问节点4
DFN[4]=LOW[4]=++index ----6
入栈 1 2 5 4
由节点4,走到5,发现5被访问过了,5还在栈里,
Low[4] = min(Low[4], DFN[5]) LOW[4]=5
说明4是5的一个子节点。

由4回到1.

回到1,判断 Low[1] = min(Low[1], Low[4])
LOW[1]还是 1 。

判断 LOW[1] == DFN[1]
诶?!相等了    说明以1为根节点的强连通分量已经找完了。
将栈中1以及1之后进栈的所有点,都出栈。
栈 :(鬼都没有了)

这个时候就完了吗?!

你以为就完了吗?!

然而并没有完,万一你只走了一遍tarjan整个图没有找完怎么办呢?!

所以。tarjan的调用最好在循环里解决。

如果这个点没有被访问过,那么就从这个点开始tarjan一遍。

因为这样好让每个点都被访问到。


好了,讲完了,来道例题练练手吧:

HDU1269 迷宫城堡

为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。
Input
输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。
Output
对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。
Sample Input
3 3
1 2
2 3
3 1
3 3
1 2
2 3
3 2
0 0
Sample Output
Yes
No

#include <bits/stdc++.h>

using namespace std;

const int MAXN = 10010;//点数
const int MAXE = 100010;//边数

struct Edge
{
    int to, next;
}edge[MAXE];

int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN];
int Index, top;
int scc;//强连通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强连通分量包含的节点数

void addedge(int u, int v)
{
    edge[tot].to = v;
    edge[tot].next = head[u];
    head[u] = tot++;
}

void Tarjan(int u)
{
    int v;
    Low[u] = DFN[u] = ++Index;
    Stack[top++] = u;
    Instack[u] = true;
    for(int i = head[u]; i != -1; i = edge[i].next)
    {
        v = edge[i].to;
        if(!DFN[v])
        {
            Tarjan(v);
            if(Low[u] > Low[v]) Low[u] = Low[v];
        }
        else if(Instack[v] && Low[u] > DFN[v])
            Low[u] = DFN[v];
    }
    if(Low[u] == DFN[u])
    {
        scc++;
        do
        {
            v = Stack[--top];
            Instack[v] = false;
            Belong[v] = scc;
            num[scc]++;
        }
        while(v != u);
    }
}

void SCC(int N)
{
    memset(DFN, 0, sizeof(DFN));
    memset(Instack, false, sizeof(Instack));
    memset(num, 0, sizeof(num));
    Index = scc = top = 0;
    for(int i = 1; i <= N; ++i)
        if(!DFN[i])
            Tarjan(i);
}

void init()
{
    tot = 0;
    memset(head, -1, sizeof(head));
}

int main()
{
    int n, m;
    while(scanf("%d%d", &n, &m) != EOF && (n || m))
    {
        init();
        int u, v;
        while(m--)
        {
            scanf("%d%d", &u, &v);
            addedge(u, v);
        }
        SCC(n);
        if(scc == 1)
            printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}

另外,用tarjan算法同样可以用来求无向图的强连通分量的数量,存边时一条无向边相当于两条方向相反的有向边,然后dfs时注意不要往父节点扩展即可。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值