
目录
1. 二叉树的中序遍历 ★★
2. 平衡二叉树 ★★
3. 二叉树中的最大路径和 ★★★
1. 二叉树的中序遍历
给定一个二叉树的根节点 root ,返回它的 中序 遍历。
示例 1:

输入:root = [1,null,2,3] 输出:[1,3,2]
示例 2:
输入:root = [] 输出:[]
示例 3:
输入:root = [1] 输出:[1]
示例 4:

输入:root = [1,2] 输出:[2,1]
示例 5:

输入:root = [1,null,2] 输出:[1,2]
提示:
- 树中节点数目在范围
[0, 100]内 -100 <= Node.val <= 100
进阶:递归算法很简单,你可以通过迭代算法完成吗?
代码:
#include <stdio.h>
#include <stdlib.h>
#define null INT_MIN
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
void traverse(struct TreeNode *node, int *result, int *count)
{
if (node == NULL)
{
return;
}
traverse(node->left, result, count);
result[*count] = node->val;
(*count)++;
traverse(node->right, result, count);
}
int* inorderTraversal(struct TreeNode *root, int *returnSize)
{
if (root == NULL)
{
*returnSize = 0;
return NULL;
}
int count = 0;
int *result = (int*)malloc(5000 * sizeof(int));
traverse(root, result, &count);
*returnSize = count;
return result;
}
TreeNode* createTree(int nums[], int size = 0, int index = 0) {
if (index >= size || nums[index] == null) {
return NULL;
}
TreeNode *node = (TreeNode*)malloc(sizeof(TreeNode));
node->val = nums[index];
node->left = createTree(nums, size, 2 * index + 1);
node->right = createTree(nums, size, 2 * index + 2);
return node;
}
int main()
{
int nums[] = {1, null, 2, null, null, 3};
int size = sizeof(nums) / sizeof(nums[0]);
TreeNode *root = createTree(nums, size);
int count = 0;
int *result = inorderTraversal(root, &count);
for (int i = 0; i < count; i++) {
printf("%d ", result[i]);
}
printf("\n");
return 0;
}
输出:
1 3 2
原题用C语言,改用C++代码如下:
#define null INT_MIN
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
struct TreeNode {
int val;
TreeNode* left;
TreeNode* right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
TreeNode* buildTree(vector<int> arr, int i = 0) {
if (i >= arr.size() || arr[i] == null) {
return NULL;
}
TreeNode* root = new TreeNode(arr[i]);
if (root == NULL) return NULL;
root->left = buildTree(arr, 2 * i + 1);
root->right = buildTree(arr, 2 * i + 2);
return root;
}
class Solution
{
private:
void traversal(TreeNode *root, vector<int> &ret)
{
if (root != NULL)
{
traversal((*root).left, ret);
ret.push_back(root->val);
traversal((*root).right, ret);
}
}
public:
vector<int> inorderTraversal(TreeNode *root)
{
vector<int> res;
traversal(root, res);
return res;
}
};
int main()
{
Solution s;
vector<int> root = {1, null, 2, null, null, 3};
TreeNode* tree = buildTree(root);
for (auto val: s.inorderTraversal(tree))
cout << val << " ";
cout << endl;
root = {};
tree = buildTree(root);
for (auto val: s.inorderTraversal(tree))
cout << val << " ";
cout << endl;
root = {1};
tree = buildTree(root, 0);
for (auto val: s.inorderTraversal(tree))
cout << val << " ";
cout << endl;
return 0;
}
进阶1:
创建和遍历都不用递归法,其中创建时空节点下的“空”位置就不用再标注出来了,比如:递归创建时使用数组{1,null,2,null,null,3},直接{1,null,2,3}时节点Node(3)会被丢弃。
#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
TreeNode* buildTree(vector<int>& nums)
{
if (nums.empty()) return nullptr;
TreeNode *root = new TreeNode(nums.front());
queue<TreeNode*> q;
q.push(root);
int i = 1;
while(!q.empty() && i < nums.size())
{
TreeNode *cur = q.front();
q.pop();
if(i < nums.size() && nums[i] != null)
{
cur->left = new TreeNode(nums[i]);
q.push(cur->left);
}
i++;
if(i < nums.size() && nums[i] != null)
{
cur->right = new TreeNode(nums[i]);
q.push(cur->right);
}
i++;
}
return root;
}
void inorderTraversal(TreeNode* root) {
stack<TreeNode*> nodes;
TreeNode* p = root;
while (p != NULL || !nodes.empty()) {
if (p != NULL) {
nodes.push(p);
p = p->left;
} else {
p = nodes.top();
nodes.pop();
cout << p->val << " ";
p = p->right;
}
}
cout << endl;
}
int main()
{
vector<int> nums = {1,null,2,3};
TreeNode *root = buildTree(nums);
inorderTraversal(root);
nums = {3,9,20,null,null,15,7};
root = buildTree(nums);
inorderTraversal(root);
nums = {1,2,2,3,3,null,null,4,4};
root = buildTree(nums);
inorderTraversal(root);
return 0;
}
输出:
1 3 2
9 3 15 20 7
4 3 4 2 3 1 2
进阶2:
遍历结果存入数组,再把数组转成某种样式的字符串形式
#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
TreeNode* buildTree(vector<int>& nums)
{
if (nums.empty()) return nullptr;
TreeNode *root = new TreeNode(nums.front());
queue<TreeNode*> q;
q.push(root);
int i = 1;
while(!q.empty() && i < nums.size())
{
TreeNode *cur = q.front();
q.pop();
if(i < nums.size() && nums[i] != null)
{
cur->left = new TreeNode(nums[i]);
q.push(cur->left);
}
i++;
if(i < nums.size() && nums[i] != null)
{
cur->right = new TreeNode(nums[i]);
q.push(cur->right);
}
i++;
}
return root;
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> nodes;
TreeNode* p = root;
while (p != NULL || !nodes.empty()) {
if (p != NULL) {
nodes.push(p);
p = p->left;
} else {
p = nodes.top();
nodes.pop();
res.push_back(p->val);
p = p->right;
}
}
return res;
}
string vectorToString(vector<int> vect) {
stringstream ss;
ss << "[";
for (int i = 0; i < vect.size(); i++)
{
ss << (vect[i] == null ? "null" : to_string(vect[i]));
ss << (i < vect.size() - 1 ? ", " : "]");
}
return ss.str();
}
int main()
{
vector<int> nums = {1,null,2,3};
TreeNode *root = buildTree(nums);
nums = inorderTraversal(root);
cout << vectorToString(nums) << endl;
nums = {3,9,20,null,null,15,7};
root = buildTree(nums);
nums = inorderTraversal(root);
cout << vectorToString(nums) << endl;
nums = {1,2,2,3,3,null,null,4,4};
root = buildTree(nums);
nums = inorderTraversal(root);
cout << vectorToString(nums) << endl;
return 0;
}
输出:
[1, 3, 2]
[9, 3, 15, 20, 7]
[4, 3, 4, 2, 3, 1, 2]
2. 平衡二叉树
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
示例 1:

输入:root = [3,9,20,null,null,15,7] 输出:true
示例 2:

输入:root = [1,2,2,3,3,null,null,4,4] 输出:false
示例 3:
输入:root = [] 输出:true
提示:
- 树中的节点数在范围
[0, 5000]内 -10^4 <= Node.val <= 10^4
代码: 递归法
#include <bits/stdc++.h>
#define null INT_MIN
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution
{
public:
int depth(TreeNode *root)
{
if (root == NULL)
return 0;
int left = depth(root->left);
int right = depth(root->right);
return fmax(left, right) + 1;
}
bool isBalanced(TreeNode *root)
{
if (root == NULL)
return true;
if (abs(depth(root->left) - depth(root->right)) > 1)
return false;
else
return isBalanced(root->left) && isBalanced(root->right);
}
};
TreeNode* createTree(int nums[], int size = 0, int index = 0) {
if (index >= size || nums[index] == null) {
return NULL;
}
TreeNode *node = (TreeNode*)malloc(sizeof(TreeNode));
node->val = nums[index];
node->left = createTree(nums, size, 2 * index + 1);
node->right = createTree(nums, size, 2 * index + 2);
return node;
}
int main()
{
int nums1[] = {3,9,20,null,null,15,7};
int size = sizeof(nums1) / sizeof(nums1[0]);
TreeNode *root = createTree(nums1, size);
Solution s;
printf("%d\n", s.depth(root->left));
printf("%d\n", s.depth(root->right));
printf("%s\n", s.isBalanced(root) ? "true" : "false");
int nums2[] = {1,2,2,3,3,null,null,4,4};
size = sizeof(nums2) / sizeof(nums2[0]);
root = createTree(nums2, size);
printf("%d\n", s.depth(root->left));
printf("%d\n", s.depth(root->right));
printf("%s\n", s.isBalanced(root) ? "true" : "false");
root = createTree(NULL);
printf("%s\n", s.isBalanced(root) ? "true" : "false");
return 0;
}
输出:
1
2
true
3
1
false
true
进阶: statck / DFS
#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
TreeNode* buildTree(vector<int>& nums)
{
if (nums.empty()) return nullptr;
TreeNode *root = new TreeNode(nums.front());
queue<TreeNode*> q;
q.push(root);
int i = 1;
while(!q.empty() && i < nums.size())
{
TreeNode *cur = q.front();
q.pop();
if(i < nums.size() && nums[i] != null)
{
cur->left = new TreeNode(nums[i]);
q.push(cur->left);
}
i++;
if(i < nums.size() && nums[i] != null)
{
cur->right = new TreeNode(nums[i]);
q.push(cur->right);
}
i++;
}
return root;
}
bool isBalanced(TreeNode* root) {
stack<TreeNode*> s;
TreeNode* p = root;
TreeNode* last = nullptr;
unordered_map<TreeNode*, int> um;
int height = 0;
while (p != nullptr || !s.empty()) {
while (p != nullptr) {
s.push(p);
um[p] = ++height;
p = p->left;
}
p = s.top();
if (p->right == nullptr || last == p->right) {
int leftHeight = um[p->left];
int rightHeight = um[p->right];
if (abs(leftHeight - rightHeight) > 1) {
return false;
}
height = max(leftHeight, rightHeight);
s.pop();
last = p;
p = nullptr;
} else {
p = p->right;
}
}
return true;
}
int main()
{
vector<int> nums = {3,9,20,null,null,15,7};
TreeNode *root = buildTree(nums);
cout << (isBalanced(root) ? "true" : "false") << endl;
nums = {1,2,2,3,3,null,null,4,4};
root = buildTree(nums);
cout << (isBalanced(root) ? "true" : "false") << endl;
nums = {};
root = buildTree(nums);
cout << (isBalanced(root) ? "true" : "false") << endl;
return 0;
}
输出:
true
false
true
3. 二叉树中的最大路径和
路径 被定义为一条从树中任意节点出发,沿父节点-子节点连接,达到任意节点的序列。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。
路径和 是路径中各节点值的总和。
给你一个二叉树的根节点 root ,返回其 最大路径和 。
示例 1:

输入:root = [1,2,3] 输出:6 解释:最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6
示例 2:

输入:root = [-10,9,20,null,null,15,7] 输出:42 解释:最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42
提示:
- 树中节点数目范围是
[1, 3 * 10^4] -1000 <= Node.val <= 1000
代码:
#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class Solution
{
public:
int maxPathSum(TreeNode *root)
{
if (!root)
return 0;
vector<TreeNode *> ss;
unordered_map<TreeNode *, int> val;
ss.push_back(root);
int len = 1;
queue<TreeNode *> q{{root}};
while (!q.empty())
{
TreeNode *t = q.front();
q.pop();
//cout << t->val << endl;
if (t->left)
{
len++;
q.push(t->left);
ss.push_back(t->left);
}
if (t->right)
{
len++;
q.push(t->right);
ss.push_back(t->right);
}
}
int res = INT_MIN;
while (len > 0)
{
TreeNode *node = ss[--len];
int ps = node->val;
int s = ps;
int ls = max(0, val[node->left]);
int rs = max(0, val[node->right]);
ps += max(ls, rs);
val[node] = ps;
s += ls + rs;
res = max(s, res);
}
return res;
}
};
TreeNode* buildTree(vector<int>& nums)
{
if (nums.empty()) return nullptr;
TreeNode *root = new TreeNode(nums.front());
queue<TreeNode*> q;
q.push(root);
int i = 1;
while(!q.empty() && i < nums.size())
{
TreeNode *cur = q.front();
q.pop();
if(i < nums.size() && nums[i] != null)
{
cur->left = new TreeNode(nums[i]);
q.push(cur->left);
}
i++;
if(i < nums.size() && nums[i] != null)
{
cur->right = new TreeNode(nums[i]);
q.push(cur->right);
}
i++;
}
return root;
}
int main()
{
vector<int> nums = {1,2,3};
TreeNode *root = buildTree(nums);
Solution s;
cout << s.maxPathSum(root) << endl;
nums = {-10,9,20,null,null,15,7};
root = buildTree(nums);
cout << s.maxPathSum(root) << endl;
return 0;
}
输出:
6
42
递归法:
#include <bits/stdc++.h>
#define null INT_MIN
using namespace std;
struct TreeNode
{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class Solution
{
public:
int maxPathSum(TreeNode* root)
{
int maxSum = INT_MIN;
maxPathSum(root, maxSum);
return maxSum;
}
int maxPathSum(TreeNode* root, int& maxSum)
{
if (root == nullptr) return 0;
int leftSum = max(0, maxPathSum(root->left, maxSum));
int rightSum = max(0, maxPathSum(root->right, maxSum));
int curSum = root->val + leftSum + rightSum; // 经过当前节点的最大路径和
maxSum = max(maxSum, curSum); // 更新最大路径和
return root->val + max(leftSum, rightSum);
}
};
TreeNode* buildTree(vector<int>& nums)
{
if (nums.empty()) return nullptr;
TreeNode *root = new TreeNode(nums.front());
queue<TreeNode*> q;
q.push(root);
int i = 1;
while(!q.empty() && i < nums.size())
{
TreeNode *cur = q.front();
q.pop();
if(i < nums.size() && nums[i] != null)
{
cur->left = new TreeNode(nums[i]);
q.push(cur->left);
}
i++;
if(i < nums.size() && nums[i] != null)
{
cur->right = new TreeNode(nums[i]);
q.push(cur->right);
}
i++;
}
return root;
}
int main()
{
vector<int> nums = {1,2,3};
TreeNode *root = buildTree(nums);
Solution s;
cout << s.maxPathSum(root) << endl;
nums = {-10,9,20,null,null,15,7};
root = buildTree(nums);
cout << s.maxPathSum(root) << endl;
return 0;
}
🌟 每日一练刷题专栏
✨ 持续,努力奋斗做强刷题搬运工!
👍 点赞,你的认可是我坚持的动力!
★ 收藏,你的青睐是我努力的方向!
✎ 评论,你的意见是我进步的财富!
| C/C++ 每日一练 专栏 |
| Python 每日一练 专栏 |

557





