part1 - KafkaUtils .createDirectStream
最近的工作中,需要对kafka中的数据做一系列的聚合计算,但数据量又比较大,processtime 大于 每个batch的duration,造成每个处理任务不断的被延迟。为解决这个问题,想到将多个计算任务启动多个yarn application,但并不确定启动多个application是否会每个读到相同的一份数据,还是多个共享一份数据,因此,查看了一下源码。
createDirectStream的一个实现如下:
def createDirectStream[
K: ClassTag,
V: ClassTag,
KD <: Decoder[K]: ClassTag,
VD <: Decoder[V]: ClassTag] (
ssc: StreamingContext,
kafkaParams: Map[String, String],
topics: Set[String]
): InputDStream[(K, V)] = {
val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)
val kc = new KafkaCluster(kafkaParams)
val fromOffsets = getFromOffsets(kc, kafkaParams, topics)
new DirectKafkaInputDStream[K, V, KD, VD, (K, V)](
ssc, kafkaParams, fromOffsets, messageHandler)
}
可以看到。这个方法返回一个DirectKafkaInputDStream
再查看DirectKafkaInputDStream的代码,
class DirectKafkaInputDStream[
K: ClassTag,
V: ClassTag,
U <: Decoder[K]: ClassTag,
T <: Decoder[V]: ClassTag,
R: ClassTag](
ssc_ : StreamingContext,
val kafkaParams: Map[String, String],
val fromOffsets: Map[TopicAndPartition, Long],
messageHandler: MessageAndMetadata[K, V] => R
) extends InputDStream[R](ssc_) with Logging {
val maxRetries = context.sparkContext.getConf.getInt(
"spark.streaming.kafka.maxRetries", 1)
可见DirectKafkaInputDStream继承了InputDStream,而InputDStream继承自DStream,DStream有个compute方法,这个方法是为指定时间产生RDD的,DirectKafkaInputDStream重写了这个方法,代码如下:
override def compute(validTime: Time): Option[KafkaRDD[K, V, U, T, R]] = {
val untilOffsets = clamp(latestLeaderOffsets(maxRetries))
val rdd = KafkaRDD[K, V, U, T, R](
context.sparkContext, kafkaParams, currentOffsets, untilOffsets, messageHandler)
// Report the record number and metadata of this batch interval to InputInfoTracker.
val offsetRanges = currentOffsets.map { case (tp, fo) =>
val uo = untilOffsets(tp)
OffsetRange(tp.topic, tp.partition, fo, uo.offset)
}
val description = offsetRanges.filter { offsetRange =>
// Don't display empty ranges.
offsetRange.fromOffset != offsetRange.untilOffset
}.map { offsetRange =>
s"topic: ${offsetRange.topic}\tpartition: ${offsetRange.partition}\t" +
s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}"
}.mkString("\n")
// Copy offsetRanges to immutable.List to prevent from being modified by the user
val metadata = Map(
"offsets" -> offsetRanges.toList,
StreamInputInfo.METADATA_KEY_DESCRIPTION -> description)
val inputInfo = StreamInputInfo(id, rdd.count, metadata)
ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)
currentOffsets = untilOffsets.map(kv => kv._1 -> kv._2.offset)
Some(rdd)
}
val rdd = KafkaRDD[K, V, U, T, R]( context.sparkContext, kafkaParams, currentOffsets, untilOffsets, messageHandler) 可见与currentOffsets有关,currentOffsets = fromOffset,fromOffset由Map[TopicAndPartition, Long]这个决定,默认是最新的offset,所以多个application不会共享一个topic