Title: Semantic Implicit Stylization: Local Texture Editing of Neural Implicit Representations
Abstract:
This paper introduces Semantic Implicit Stylization (SIS), a novel approach for local stylization of 3D objects represented as neural implicit functions. SIS leverages semantic maps to guide the stylization process, enabling fine-grained control over the application of different styles and textures to specific regions of the object. Our method addresses the challenges of stylizing complex and nuanced shapes by combining the flexibility of neural implicit representations with the guidance of semantic information. We demonstrate the effectiveness of SIS on a variety of 3D models, showcasing its ability to generate high-quality and diverse stylized results. Our approach opens up new possibilities for 3D object customization and design, offering a powerful tool for artists and creators.
Keywords:
3D stylization, neural implicit representation, NeRF, semantic map, local editing, texture synthesis, deep learning.
TOC
-
Introduction
- 1.1 Motivation
- 1.2 Contributions
- 1.3 Outline
-
Related Work
- 2.1 3D Shape Stylization
- 2.1.1 Text-based Stylization
- 2.1.2 Image-based Stylization
- 2.2 Implicit Neural Representations
- 2.2.1 NeRFs and Variants
- 2.2.2 Applications of NeRFs
- 2.3 Semantic Guidance
- 2.3.1 Semantic Segmentation
- 2.3.2 Semantic Editing
- 2.1 3D Shape Stylization
-
Method (Figure 1)
- 3.1 Neural Implicit Representation
- 3.1.1 NeRF Architecture
- 3.1.2 Training Procedure
- 3.2 Semantic Mapping (Figure 2)
- 3.2.1 Semantic Map Acquisition
- 3.2.2 Semantic Map Processing
- 3.3 Local Stylization (Figure 3, Algorithm 1, Algorithm 2)
- 3.3.1 Stylization Network
- 3.3.2 Integration with NeRF
- 3.1 Neural Implicit Representation
-
Experiments
- 4.1 Dataset and Evaluation Metrics
- 4.1.1 Dataset Description
- 4.1.2 Evaluation Metrics
- 4.2 Implementation Details
- 4.2.1 Network Architecture
- 4.2.2 Training Parameters
- 4.3 Results (Figure 4, Figure 5, Table 1, Table 2)
- 4.3.1 Qualitative Results
- 4.3.2 Quantitative Results
- 4.1 Dataset and Evaluation Metrics
-
Discussion
- 5.1 Limitations
- 5.2 Future Work
-
Conclusion
List of Figures
-
Figure 1: Overview of the proposed SIS method.
-
Figure 2: Examples of semantic maps for local stylization.
-
Figure 3: Visualization of the stylization process.
-
Figure 4: Qualitative results of SIS on 3D models.
-
Figure 5: Comparison of SIS with baseline methods.
List of Tables
-
Table 1: Quantitative results of SIS and baseline methods.
-
Table 2: Ablation study of SIS components.
List of Algorithms
-
Algorithm 1: Training the stylization network.
-
Algorithm 2: Local stylization process.
Related Work (References)
- Chen, K., Huang, Z., Zhang, H., Xu, W., & Zhang, H. (2023). Magic3D: High-Resolution Text-to-3D Content Creation. ArXiv.
- Chibane, J., Alldieck, T., & Pons-Moll, G. (2020). Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
- Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierarchical Image Database. Proceedings of the IEEE/CVF1 Conference on Computer Vision and Pattern Recognition.2
- Dinh, L., Krueger, D., & Bengio, Y. (2014). NICE: Non-linear Independent Components Estimation. ArXiv.
- Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., & Cohen-Or, D. (2022). StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation. ACM Transactions on Graphics (TOG).
- Gao, J., Yin, K., Shugrina, M., Khamis, S., & Fidler, S. (2021). 3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations. Proceedings of the IEEE/CVF International Conference on Computer Vision.
- Li, J., Li, Y., Fang, C., Yang, H., & Sheng, B. (2023). CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation. ArXiv.
- Liu, S., Zhang, Y., Peng, S., Shi, B., Pollefeys, M., & Cui, Z. (2022). GET3D: A Generative Model of High Quality 3D Textured Shapes Learned from Images. Advances in Neural Information Processing Systems.3
- Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., & Geiger, A. (2019). Occupancy Networks: Learning 3D Reconstruction in Function Space.4 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.5
- Michel, O., Synnaeve, G., Lin, Y., Martin-Brualla, R., Goldberg, Y., & Chechik, G. (2022). Text2Mesh: Text-Driven Neural Mesh Generation. ArXiv.
- Mokady, R., Hertz, A., Aberman, K., Pritch, Y., & Cohen-Or, D. (2022). ClipCap: CLIP Prefix for Image Captioning. ArXiv.
- Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3D ShapeNets: A Deep Representation for Volumetric Shapes. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.6
- Yin, K., Gao, J., Shugrina, M., Khamis, S., & Fidler, S. (2021). 3DStyleNet: Creating 3D Shapes with Geometric and Texture Style Variations. Proceedings of the IEEE/CVF International Conference on Computer Vision.
- Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., & Kreis, K. (2022). LION: Latent Point Diffusion Models for 3D Shape Generation.7 ArXiv.
- Zhang, K., Kolkin, N., Bi, S., Luan, F., Xu, Z., Shechtman, E., & Snavely, N. (2022). ARF: Artistic Radiance Fields. European Conference on Computer Vision.
- Zhou, Q., & Jacobson, A. (2016). Thingi10K: A Dataset of 10,000 3D-Printing Models. ArXiv.
- Zhu, J., & Zhuang, P. (2023). HiFA: High-Fidelity Text-to-3D with Advanced Diffusion Guidance. ArXiv.
- Zhuang, J., Wang, C., Liu, L., Lin, L., & Li, G. (2023). DreamEditor: Text-Driven 3D Scene Editing with Neural Fields. SIGGRAPH Asia.
2012

被折叠的 条评论
为什么被折叠?



