Study notes of achieving a senior software engineer

本文深入探讨了图算法的核心概念及实现细节,包括迪杰斯特拉算法、弗洛伊德算法、福特-福克森算法、贝尔曼-福德算法等。通过具体示例展示了这些算法的应用场景及其复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

All notes are from internet and they are only for my personally quick revision. 


Necessary algorithms for Google Interview





1.binary tree 










2. graph study notes


3.Dijkstra Algorithm

/*
 Petar 'PetarV' Velickovic
 Algorithm: Dijkstra's Algorithm
*/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <vector>
#include <list>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <complex>
#define MAX_N 100001
#define INF 987654321
using namespace std;
typedef long long lld;

int n;

struct Node
{
    int dist;
    vector<int> adj;
    vector<int> weight;
};
Node graf[MAX_N];
bool mark[MAX_N];

struct pq_entry
{
    int node, dist;
    bool operator <(const pq_entry &a) const
    {
        if (dist != a.dist) return (dist > a.dist); // get the smallest value,  due to greater than
        return (node > a.node);
    }
};

//Dijkstrin algoritam za nalazenje duzina najkracih puteva iz jednog izvora u grafu
//Slozenost: O((V+E)log V)

inline void Dijkstra(int source)
{
    priority_queue<pq_entry> pq;
    pq_entry P;
    for (int i=0;i<n;i++)
    {
        if (i == source)
        {
            graf[i].dist = 0;
            P.node = i;
            P.dist = 0;
            pq.push(P);
        }
        else graf[i].dist = INF;
    } //initialise the date, 
    while (!pq.empty())
    {
        pq_entry curr = pq.top();// get the least number
        pq.pop();
        int nod = curr.node;
        int dis = curr.dist;
        for (int i=0;i<graf[nod].adj.size();i++)
        {
            if (!mark[graf[nod].adj[i]])// iterate all adjacent notes
            {
                int nextNode = graf[nod].adj[i];
                if (dis + graf[nod].weight[i] < graf[nextNode].dist)
                {
                    graf[nextNode].dist = dis + graf[nod].weight[i];
                    P.node = nextNode;
                    P.dist = graf[nextNode].dist;
                    pq.push(P);
                }
            }
        }
        mark[nod] = true;
    }
}

int main()
{
    n = 4;
    
    graf[0].adj.push_back(1);
    graf[0].weight.push_back(5);
    graf[1].adj.push_back(0);
    graf[1].weight.push_back(5);
    
    graf[1].adj.push_back(2);
    graf[1].weight.push_back(5);
    graf[2].adj.push_back(1);
    graf[2].weight.push_back(5);
    
    graf[2].adj.push_back(3);
    graf[2].weight.push_back(5);
    graf[3].adj.push_back(2);
    graf[3].weight.push_back(5);
    
    graf[3].adj.push_back(1);
    graf[3].weight.push_back(6);
    graf[1].adj.push_back(3);
    graf[1].weight.push_back(6);
    
    Dijkstra(0);
    
    printf("%d\n",graf[3].dist);
    return 0;
}

4.Floyd-Warshall Algorithm

/*
 Petar 'PetarV' Velickovic 
 Algorithm: Floyd-Warshall Algorithm
*/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <vector>
#include <list>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <complex>
#define MAX_N 300
#define INF 987654321
using namespace std;
typedef long long lld;

int n;

int dist[MAX_N][MAX_N];
int flojd[MAX_N][MAX_N];

//Floyd-Warshallov algoritam za trazenje duzina najkracih puteva svih parova cvorova u grafu
//Slozenost: O(V^3)

inline void FloydWarshall()
{
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<=n;j++)
        {
            flojd[i][j] = dist[i][j];
        }
        flojd[i][i] = 0;
    }
    for (int k=1;k<=n;k++)
    {
        for (int i=1;i<=n;i++)
        {
            for (int j=1;j<=n;j++)
            {
                if (flojd[i][k] + flojd[k][j] < flojd[i][j])
                {
                    flojd[i][j] = flojd[i][k] + flojd[k][j];
                }
            }
        }
    }
}

int main()
{
    n = 3;
    dist[1][1] = 0, dist[1][2] = 3, dist[1][3] = INF;
    dist[2][1] = INF, dist[2][2] = 0, dist[2][3] = 4;
    dist[3][1] = INF, dist[3][2] = 1, dist[3][3] = 0;
    FloydWarshall();
    printf("%d\n",flojd[1][3]);
    return 0;
}

5.Ford-Fulkerson Algorithm

经典讲解:https://www.youtube.com/watch?v=GiN3jRdgxU4

typical concepts of the flow network:




/*
 Petar 'PetarV' Velickovic
 Algorithm: Ford-Fulkerson Algorithm
*/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <vector>
#include <list>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <complex>
#define MAX_N 500
#define INF 987654321
using namespace std;
typedef long long lld;

struct Node
{
    vector<int> adj;
};
Node graf[MAX_N];
bool mark[MAX_N];
int cap[MAX_N][MAX_N];
int parent[MAX_N];

int v, e;
int s, t;

//Ford-Fulkersonov algoritam za nalazenje maksimalnog protoka izmedju dva cvora u grafu
//Moze se koristiti i za nalazenje maksimalnog matchinga
//Slozenost: O(E * maxFlow)

inline int DFS()
{
    int ret = 0;
    for (int i=1;i<=v;i++) parent[i] = 0;
    stack<int> dfs_stek;
    stack<int> minCapacity;
    parent[s] = -1;
    dfs_stek.push(s);
    minCapacity.push(INF);
    while (!dfs_stek.empty())
    {
        int xt = dfs_stek.top();
        int mt = minCapacity.top();
        dfs_stek.pop();
        minCapacity.pop();
        if (xt == t)
        {
            ret = mt;
            break;
        }
        for (int i=0;i<graf[xt].adj.size();i++)
        {
            int xt1 = graf[xt].adj[i];
            if (cap[xt][xt1] > 0 && parent[xt1] == 0)
            {
                dfs_stek.push(xt1);
                minCapacity.push(min(mt,cap[xt][xt1]));
                parent[xt1] = xt;
            }
        }
    }
    if (ret > 0)
    {
        int currNode = t;
        while (currNode != s)
        {
            cap[parent[currNode]][currNode] -= ret;
            cap[currNode][parent[currNode]] += ret;
            currNode = parent[currNode];
        }
    }
    return ret;
}

inline int FordFulkerson()
{
    int flow = 0;
    while (true)
    {
        int currFlow = DFS();
        if (currFlow == 0) break;
        else flow += currFlow;
    }
    return flow;
}

int main()
{
    v = 4, e = 5;
    s = 1, t = 4;
    
    graf[1].adj.push_back(2);
    graf[2].adj.push_back(1);
    cap[1][2] = 40;
    
    graf[1].adj.push_back(4);
    graf[4].adj.push_back(1);
    cap[1][4] = 20;
    
    graf[2].adj.push_back(4);
    graf[4].adj.push_back(2);
    cap[2][4] = 20;
    
    graf[2].adj.push_back(3);
    graf[3].adj.push_back(2);
    cap[2][3] = 30;
    
    graf[3].adj.push_back(4);
    graf[4].adj.push_back(3);
    cap[3][4] = 10;
    
    printf("%d\n",FordFulkerson());
    
    return 0;
}

6.Bellman-Ford Algorithm

/*
 Petar 'PetarV' Velickovic
 Algorithm: Bellman-Ford Algorithm
*/

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <vector>
#include <list>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <complex>
#define MAX_N 5001
#define MAX_E 25000001
#define INF 987654321
using namespace std;
typedef long long lld;

int v, e;

int dist[MAX_N];
struct Edge
{
    int x, y, weight;
};
Edge E[MAX_N];

//Bellman-Ford algoritam za trazenje najkracih puteva iz odredjenog cvora u grafu (graf moze imati i negativne ivice)
//Slozenost: O(V*E)

inline int BellmanFord(int source)
{
    for (int i=0;i<v;i++)
    {
        if (i == source) dist[i]=0;
        else dist[i] = INF;
    }
    bool done = false;
    for (int i=0;!done&&i<v;i++)
    {
        done = true;
        for (int j=0;j<e;j++)
        {
            int so = E[j].x;
            int de = E[j].y;
			cout<<"dist[so "<<so<<"]="<<dist[so]<<endl;
			cout<<"dist[de "<<de<<"]="<<dist[de]<<" weight="<<E[j].weight<<endl;
            if (dist[so] + E[j].weight < dist[de])
            {
                dist[de] = dist[so] + E[j].weight;
                done=false;
				cout<<"<<<<<<<<<<<<<<"<<endl;
            }
			cout<<"-------------dist[de"<<de<<"]="<<dist[de]<<endl;
			cout<<"-------------dist[so"<<so<<"]="<<dist[so]<<endl;
			cout<<"j="<<j<<endl;
        }
		cout<<"---done="<<done<<endl;
    }
    if (!done) return -1; //negative edge cycle detected
    return 0;
}

int main()
{
    v = 4, e = 8;
    
    E[0].x = 0, E[0].y = 1, E[0].weight = 5;
    E[1].x = 1, E[1].y = 0, E[1].weight = 5;
    
    E[2].x = 1, E[2].y = 2, E[2].weight = 5;
    E[3].x = 2, E[3].y = 1, E[3].weight = 5;
    
    E[4].x = 2, E[4].y = 3, E[4].weight = 5;
    E[5].x = 3, E[5].y = 2, E[5].weight = 5;
    
    E[6].x = 3, E[6].y = 1, E[6].weight = 6;
    E[7].x = 1, E[7].y = 3, E[7].weight = 6;
    
    BellmanFord(0);
    printf("%d\n",dist[3]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值