方差和标准差的意义

本文通过箭靶、身高和身高+体重的案例,形象解释方差和标准差的概念。它们度量数据距离均值的离散程度,帮助理解数据的集中趋势。蓝色箭靶点更集中,显示方差/标准差小;身高数据,高方差表示更大离散;身高+体重二维数据,方差变化趋势更鲜明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《大数据平台架构与原型实现:数据中台建设实战》 博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维码进入京东手机购书页面。

在此前一篇文章《算法效果评估:均方根误差(RMSE)/ 标准误差》中,我们介绍了方差/标准差的计算方法,也点出了它们是用来“度量数据离散程度”的一种数学方法,但是对于它们的意义并没有给出更具体和形象的解释。本文,我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laurence 

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值