MA214 Algorithms and Data Structures 2023/24 Exercises 7Python

Java Python MA214 Algorithms and Data Structures

2023/24

Exercises 7

(DFS, BFS, binary search trees)

Exercise 7.1. Depth-First Search                            3 pts

Recall the Depth-First Search (DFS) algorithm and the pseudocode on this week’s lec-ture slides. Implement this algorithm in Python using our implementation of graphs in Graphs.py. Call the two functions DFS and DFSVisit. Use the template DFS.py provided on Moodle.

Exercise 7.2. Wrestlers                                            3 pts

There are two groups of professional wrestlers:“babyfaces” (“good guys”) and “heels” (“bad guys”). Our goal is to assign n professional wrestlers to these two groups under the following constraints. Between any pair of professional wrestlers, there may or may not be a rivalry. We have a list of the r pairs of wrestlers for which there are rivalries. Give an O(n + r)-time algorithm that determines whether it is possible to designate some of the wrestlers as babyfaces and the remainder as heels such that each rivalry is between a babyface and a heel. If it is possible to perform. such a designation, your algorithm should produce it.

Exercise 7.3. Binary Search Trees                           4 pts

In this question, you are asked to implement a binary search tree (See Chapter 12 in the course textbook). A binary search tree is organised in the form. of a binary tree, where each node stores a value attribute (say, an integer) and two links, to the left and the right child of the current nod MA214 Algorithms and Data Structures 2023/24 Exercises 7Python e. Both children of a leaf node are None. In addition, a binary search tree satisfies the following property:

• Let x be a node in a binary search tree. If y is a node in the left subtree of x, then y.value≤x.value. If y is a node in the right subtree of x, then y.value>x.value. (Here we broke the ties towards the left, differently from the textbook.)

On the moodle page is a template BST.py for a binary search tree implementation. Please use this template for completing the questions below. Here is an excerpt from this template.

1 class Node :

2 def __init__ ( self , val , par ) :

3 self . left = None

4 self . right = None

5 self . parent = par

6 self . value = val

7

8 class BinarySearchTree :

9 def __init__ ( self ) :

10 self . root = None

11

12 # returns the minimum (in the left - most item );

13 # returns None if the tree is empty

14 def min( self ) :

15 # Part (a)

16

17 # inserts x in the tree unless present ;

18 # returns pointer to Node with value x

19 def insert ( self , x ) :

20 # Part (b)

21

22 # returns Node with value x in the tree ;

23 # if not present , returns None

24 def find ( self , x ) :

25 # Part (c)

(a) Implement a Python function min() that returns the minimim value stored in the current binary search tree.

(b) Implement a Python function insert(x) that inserts the value x into the binary search tree (unless already existent) and returns a pointer to the Node with value x.

(c) Implement a Python function find(x) that finds the value x in the binary search tree and returns a pointer to the Node containing it (if it exists). If x is not present in the tree, then it returns None         

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值