INFS5710 Information Technology Infrastructure for Business AnalyticsSQL

部署运行你感兴趣的模型镜像

Java Python INFS5710 Information Technology Infrastructure for Business Analytics

Project Statement

(Due by noon 12 PM on Monday 29 July 2024 via Moodle)

This project accounts for 25% of the total marks for this course.

The deliverables area project report (pdf) and a PowerPoint file.

Bike sharing has become increasingly popular across the globe. Today, such programs operate in more than 1,000 cities, with more than half a million bicycles in use. The principle of bike sharing is simple: individuals use bicycles on an as-needed basis without the costs and responsibilities of bike ownership. It is short-term bicycle access, which provides its users with an environmentally friendly form of public transportation. This flexible scheme targets daily mobility and allows users to access public bicycles at unattended bike stations; bicycle reservations, pickup, and drop-off are all self-service. Commonly concentrated in urban settings, bike sharing programs also provide multiple bike station locations that enable users to pick up and return bicycles to different stations.

This project is about theMetro Bike Share(Metro) in the metropolitan area of Los Angeles (LA), a large city in the US with a population of several million.  You area business consultant working for the bike-sharing program.

Bike-sharing data

Your manager just referred you to download historical bike-sharing data from the following site:

https://bikeshare.metro.net/about/data/, which contains data of millions bike trips from July 2016 Q3 - 2024 Q1. Since the data come from the US, please be aware of the difference in dateformats between the US (mm/dd/yyyy) and Australia (dd/mm/yyyy).

You can find the locations of bike stations in the GPS coordinate system. For example, the coordinate of astation is (x, y), where x is the longitude coordinate andy is the latitude coordinate. The following link helps you to understand more about the GPS coordinate system :https://www.ubergizmo.com/how-to/read-gps-coordinates/. If you want to locate a place on Google Map by its latitude and longitude, you can also do it. For details, see the following linkhttps://support.google.com/maps/answer/18539. If you are interested in estimating the distance traveled for a ride, assuming that a bike rental starts   from (x1, y1) and ends at (x2, y2), it is recommended that you estimate it using the so-called taxicab distance, which is |x1  − x2 | + |y1  − y2 |. See the following figure for interpretation. For more information, please seehttps://study.com/academy/lesson/taxicab-geometry-history-formula.html. Note that whether the distance is in degrees (without any conversion from longitude-latitude coordinates), miles, or kms, your findings, interpretations or insights should not change. It is recommended that you just quote the distances in degrees.

Weather data

Weather plays an important role when people decide whether or not to use bike-sharing. You are required to explore the relationship between weather (e.g., temperature, wind speed and humidity) and the bike-sharing rentals in this project. There are two known ways to download free historical weather data. The first way is to manually capture weather data month by month from Weather Underground

(wunderground.com).

•    First visithttps://www.wunderground.com/and try to search the weather condition in LA. (There are other locations that you may also try where there are many bike stations as well.)

•    You will be led to the site of a nearby weather station, which may be different from time to time. For example, consider the following site about Los Angeles (at some station):

https://www.wunderground.com/weather/us/ca/los-angeles

•    Click the History tab on the page, and then choose to view Monthly weather data. Once you choose a month, click View.  For example, the following link shows the weather data of June 2020 measured at the Burbank station (near Los Angeles):

https://www.wunderground.com/history/monthly/us/ca/burbank/KBUR/date/2020-6

•    Scroll down the page,and you will see the table of Daily Observations. Use your mouse to copy the table and paste it to an Excel spreadsheet.

•    Copy only the data required,i.e., July 2016 Q3 - 2024 Q1, for this project.

Another way, as suggested by a former student, is to download weather data from NOAA. Try:

https://www.ncdc.noaa.gov/cdo-web/search. Search for "Daily Summaries" at relevant weather stations for a time period then "Add to Cart" - NOTE that this is a free service, but you'll have to type in an email   address so that you can get the data download link once it processes.

Holiday data

Another factor that influences bike-sharing rentals is holidays. You can easily search the dates of the US federal holidays and/or California state holidays each year.

The Task

Your manager asked you to collect and analyze the data to “let the data speak.”  You understand that the company wants to further grow the market and attract more users. To do so, having business insights from the data is crucial.

In this project, you are expected to manage and clean the data collected; some of them may contain missing data, different formatting, and incomplete information. The goal is to overcome such obstacles commonly encountered when dealing with real data, while deriving business insights from the datasets that can be used to promote Metro bike-sharing business.

Borrowing the terms from Data Warehouse (to be covered in Week 6), the following are some “dimensions” for the analysis in this project: station(s), time (including holidays), weather, membership, region, and bike-type. There is one obvious “measure” in this context, which is the bike use, the number of rides,or the demand. We define an “analysis topic” as one that studies how a measure changes according to one or multiple dimensions. For example, you may study the daily demand pattern and how it has changed over the past 10 years, under different weather conditions and/or whether the day is a holiday. In this example analysis topic, weather data and holiday data are utilized. Note that you need to make sure that your analysis topic must be meaningful.

For this project, you are expected to choose no more than three analysis topics to study. It is preferable that you study one topic in depth, rather than multiple ones superficially. There are two constraints for your study: (i) You must conduct achronological analysis for each topic. That is, one dimension must be the time horizon from the distant past to the recent past (at least across multiple years). For example, the introduction of motor bikes in late 2020 and the COVID pandemic must have impacted the customers’ demand for bike sharing. Their impact can only be seen from chronological analysis. (ii) You must utilize the weather and holiday data in your study. You do not need to use both in each analysis topic. But ultimately, each of them must be used in some of your analysis topics. Utilizing the regional data is optional; but doing so may help you receive a higher mark to reward your additional effort.

You are expected to use SAS Enterprise Guide (EG) for this project. To begin with the ETL (extract, transform. and loading) process, you need to prepare your data in proper tables that will go into SAS, like how you uploaded CSV data files to SAS in your Homework 1. That is, you need to create tables in the SAS environment.

Whenever you want to conduct an analysis, you must write a query to select relevant attributes by properly joining multiple tables to obtain a resultant table for a specific analysis. Please properly document your queries in the appendix of your report. The Appendix of this statement shows you some common data analysis and visualization functions of SAS EG. More features of SAS EG will be introduced  in a tutorial session later. (Note: it is possible that you may not be able to plot your desired graphs using  SAS EG. If necessary, you may use other software such as Excel for graphing.)

Finally, please note that the management (or the LIC) does not know anything beyond this project statement. Therefore, you need to use your own judgement and make necessary and reasonable assumptions when doing this project. Make sure to document all assumptions made in your report.

Project Deliverable

There are two required deliverables for this project: a report of no more than 10 pages (in pdf format) and a PowerPoint file. Their suggested structures are detailed below.

Report structure

The following is a suggested structure of your report:

•    Cover page for your group project, including group number, e.g., T15A Group  INFS5710 Information Technology Infrastructure for Business AnalyticsSQL ;2,and each member’s name and photo (not included in the 10-page limit).

•    Fill out a table that contains summary information of your analysis topics. The following is merely an example (in red):

Summary of Analyses

No.

Topic Description

Chronological Analysis

Weather Analysis

Holiday Analysis

Note (e.g., special

efforts that you want to let the marker know)

1

We study the weekly demand

pattern and how it changes over the past 10 years, under different weather conditions.

2

We study how different holidays

influence the demand over the past 10 years

Our result is

unique, as special

efforts were spent

on xxxx.

3

N/A

o Column 1, No.: no more than 3 topics should be presented.

o Column 2, Topic Description: briefly describe what you do in this topic

o Columns 3 - 6: tick if the corresponding analysis is involved in your topic

o Column 7, Note: If you have anything that you want the marker to know (e.g., special efforts to gain additional marks), please write here.

• Introduction

•    Detail how you prepare the data for analysis. This includes how you clean data, manage missing information, and how you organize tables that go into SAS.

•    Detail how you perform data analysis using SAS Enterprise Guide (referring to the queries that you used for analysis in the appendix). It is suggested that this section contains subsections such that each subsection presents an analysis topic, the corresponding research question (e.g., what station is most popular?) and the analysis result.

•    Business insights and recommendation

•    An appendix that contains the queries used or functions from Enterprise Guide in your project.

The appendix has no page limits.

Slide structure

•   You will need to make a presentation in your tutorial session in Week 10. Your presentation should be limited to 8 minutes with 4 static slides that contain no animations or'movement'of any

description. These 4 slides should have the following headings: “Group Information” (1st slide

including group number, e.g., T15A Group 2, and each member’s name and photo), “Major findings – I”, “Major findings – II”, and “Major findings – III” (2nd – 4th slides).

•   Name your PPT file using your group number,e.g., T15A_Group2.pptx, and upload it via Moodle by the due time.

Marking guideline

Item (%)

Description

Data preparation (25%)

Do you properly manage missing data?

Do you properly preprocess the tables used by SAS?

Quality of the data analysis (40%)

Are your analysis topics interesting and not trivial?

Are your analysis topics meaningful to the Metro business?

Have you properly analyzed the data with the right functions or steps? Have you provided proper data visualization (for example, table or

graph) to present and support your analysis?

Are there special efforts invested in processing or analyzing some data?

Quality of business

insights obtained and recommendation (25%)

Do you obtain business insights from the data? Are your obtained insights helpful for business?

Do you provide proper recommendations to make use of the obtained insights?

Presentation and

recording quality (10%)

Is your presentation clear and effective to professional standards?

Total (100%)

Appendix: Using Enterprise Guide for Data Analysis and Visualization

Given a data file opened in SAS Enterprise Guide, you can see some analysis and visualization functions available (from the tool bar below).

Most functions are straightforward to use. Graphs can be found under Graph; some useful analysis tools can be found under Analyze in the tool bar. You are expected to try them by yourself.

Note that the data visualization functions only apply to a SAS data file only.  When you write a query,

before you can graph the table of the query outcome, you need to save the result table as a SAS data file using “create” statement, which has been introduced previously.

Graphing:

Line Chart

Bar Chart

Histogram

If you are not familiar with the concept of histogram, please read the following site abouthistogram. To plot a histogram, choose Bar Chart Wizard. In Step 2 out of 4, choose Percentage for the Bar height.

Correlation Analysis

You may plot a 2D scatter chart first for the two variables that you want to study their correlation.

If a correlation is revealed from the scatter chart, you may also calculate the exact correlation between these two variables. Assume these two variables are “Amount” and “Visits”. The following figures show how their correlation can be calculated.

Drag Amount and Visits from the left pane to the right pane         

您可能感兴趣的与本文相关的镜像

Qwen-Image

Qwen-Image

图片生成
Qwen

Qwen-Image是阿里云通义千问团队于2025年8月发布的亿参数图像生成基础模型,其最大亮点是强大的复杂文本渲染和精确图像编辑能力,能够生成包含多行、段落级中英文文本的高保真图像

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深入理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷入局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值