本文为《Thomas’ Calculus Early Transcendentals》阅读笔记
- Definition: A function f f f from a set D D D to a set Y Y Y is a rule that assigns a unique(single) element f ( x ) ∈ Y f(x) \in Y f(x)∈Y to each elements x ∈ D x \in D x∈D
- The set D D D of all possible input values is called the domain of the function.
- The set of all output values of f ( x ) f(x) f(x) as x x x varies throughout D D D is called the range of the function
- If
f
f
f is a function with domain
D
D
D, its graph consists of the points in the Cartesian plane whose coordinates are the input-output pairs for
f
f
f.
- Another way to represented function is numerically, through a table of values. The graph consisting of only the points in the table is called a scatterplot.
- Not every curve of coordinate plane can be the graph of a function. A function f f f can have only one value f ( x ) f(x) f(x) for each x x x in the domain, so no vertical line can intersect the graph of a function more than once. If a a a is in the domain of function f f f, then the vertical line x = a x = a x=a will intersect the graph of f f f at the single point ( a , f ( a ) ) (a, f(a)) (a,f(a))
- Sometimes a function is described in pieces by using different formulas on different parts of its domain. One example is the absolute value function:
∣ x ∣ = { x , x ≥ 0 − x , x < 0 |x| = \begin{dcases} x,&x \ge 0\\ -x,&x < 0 \end{dcases} ∣x∣={x,−x,x≥0x<0 - Definition: Let
f
f
f be a function defined on an interval
I
I
I and let
x
1
x_{1}
x1 and
x
2
x_{2}
x2 be any points in
I
I
I.
1) If f ( x 2 ) > f ( x 1 ) f(x_{2}) > f(x_{1}) f(x2)>f(x1) whenever x 1 < x 2 x_{1} < x_{2} x1<x2, then f f f is said to be increasing on I I I
2) If f ( x 2 ) < f ( x 1 ) f(x_{2}) < f(x_{1}) f(x2)<f(x1) whenever x 1 < x 2 x_{1} < x_{2} x1<x2, then f f f is said to be decreasing on I I I - Definition: A function
y
=
f
(
x
)
y = f(x)
y=f(x) is an
even function of x if f ( − x ) = f ( x ) f(-x) = f(x) f(−x)=f(x)
odd function of x if f ( − x ) = − f ( x ) f(-x) = -f(x) f(−x)=−f(x)
for every x x x in the function’s domain.
The graph of an even function is symmetric about the y-axis.
The graph of an odd function is symmetric about the origin. - A function of the form f ( x ) = m x + b f(x) = mx + b f(x)=mx+b, for constants m m m and b b b, is called a linear function.
- A function f ( x ) = x a f(x) = x^a f(x)=xa, where a a a is a constant, is called a power function.
- A function
p
p
p is a polynomial if
p ( x ) = a n x n + a n − 1 x n − 1 + … + a 1 x + a 0 p(x) = a_{n} x^n + a_{n-1} x^{n-1} + \ldots + a_{1}x + a_{0} p(x)=anxn+an−1xn−1+…+a1x+a0
where n n n is a nonnegative integer and the numbers a 0 , a 1 , a 2 , … , a n a_{0}, a_{1}, a_{2}, \ldots, a_{n} a0,a1,a2,…,an are real constants(called the coefficients of the polynomial). - A rational function is a quotient or ratio f ( x ) = p ( x ) / q ( x ) f(x) = p(x)/q(x) f(x)=p(x)/q(x), where p p p and q q q are polynomials. The domain of a rational function is the set of all real x x x for which q ( x ) ≠ 0 q(x) \neq 0 q(x)̸=0.
- Any function constructed from polynomials using algebraic operations (addition, subtraction, division, multiplication, and taking roots) lies within the class of algebraic functions.
- The six basic trigonometric functions are reviewed in Section 1.3.
- Functions of the form f ( x ) = a x f(x) = a^{x} f(x)=ax, where the base a > 0 a > 0 a>0 is a positive constant and a ≠ 1 a \neq 1 a̸=1, are called exponential function.
- Logarithmic functions are the functions f ( x ) = log a x f(x) = \log_{a}x f(x)=logax, where the base a ≠ 1 a \neq 1 a̸=1 is a positive constant.
Exercises
In exercises 1-6, find the domain and range of each function.
- f ( x ) = 1 + x 2 f(x) = 1 + x^2 f(x)=1+x2 domain: x ∈ ( − ∞ , + ∞ ) x \in (-\infty, +\infty) x∈(−∞,+∞) range: f ( x ) ∈ [ 1 , + ∞ ) f(x) \in [1, +\infty) f(x)∈[1,+∞)
- f ( x ) = 1 − x f(x) = 1 - \sqrt{x} f(x)=1−x domain: x ∈ [ 0 , + ∞ ) x \in [0, +\infty) x∈[0,+∞) range: f ( x ) ∈ ( − ∞ , 1 ] f(x) \in (-\infty, 1] f(x)∈(−∞,1]
- F ( x ) = 5 x + 10 F(x) = \sqrt{5x + 10} F(x)=5x+10 domain: x ∈ [ − 2 , + ∞ ) x \in [-2, +\infty) x∈[−2,+∞) range: F ( x ) ∈ [ 0 , + ∞ ) F(x) \in [0, +\infty) F(x)∈[0,+∞)
- g ( x ) = x 2 − 3 x g(x) = \sqrt{x^2 - 3x} g(x)=x2−3x domain: x ∈ ( − ∞ , 0 ] ⋃ [ 3 , + ∞ ) x \in (-\infty, 0] \bigcup [3, +\infty) x∈(−∞,0]⋃[3,+∞) range: g ( x ) ∈ [ 0 , + ∞ ) g(x) \in [0, +\infty) g(x)∈[0,+∞)
- f ( t ) = 4 3 − t f(t) = \frac{4}{3-t} f(t)=3−t4 domain: t ∈ ( − ∞ , 3 ) ⋃ ( 3 , + ∞ ) t \in (-\infty,3) \bigcup (3, +\infty) t∈(−∞,3)⋃(3,+∞) range: f ( t ) ∈ ( − ∞ , + ∞ ) f(t) \in (-\infty, +\infty) f(t)∈(−∞,+∞)
- G ( t ) = 2 t 2 − 16 G(t) = \frac{2}{t^2 -16} G(t)=t2−162 domain: t ∈ ( − ∞ , 4 ) ⋃ ( 4 , + ∞ ) t \in (-\infty,4) \bigcup (4, +\infty) t∈(−∞,4)⋃(4,+∞) range: G ( t ) ∈ ( − ∞ , − 1 8 ] ⋃ ( 0 , + ∞ ) G(t) \in (-\infty, -\frac{1}{8}] \bigcup (0, +\infty) G(t)∈(−∞,−81]⋃(0,+∞)